SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sjögren Johan) ;pers:(Svensson Johan 1964)"

Sökning: WFRF:(Sjögren Johan) > Svensson Johan 1964

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Svensson, Johan, 1964, et al. (författare)
  • Liver-derived IGF-I regulates kidney size, sodium reabsorption, and renal IGF-II expression.
  • 2007
  • Ingår i: The Journal of endocrinology. - 0022-0795. ; 193:3, s. 359-66
  • Tidskriftsartikel (refereegranskat)abstract
    • The GH/-IGF-I axis is important for kidney size and function and may also be involved in the development of renal failure. In this study, the role of liver-derived endocrine IGF-I for kidney size and function was investigated in mice with adult liver-specific IGF-I inactivation (LI-IGF-I(-/-) mice). These mice have an 80-85% reduction of serum IGF-I level and compensatory increased GH secretion. Seven-month-old as well as 24-month-old LI-IGF-I(-/-) mice had decreased kidney weight. Glomerular filtration rate, assessed using creatinine clearance as well as creatinine clearance corrected for body weight, was unchanged. The 24-h urine excretion of sodium and potassium was increased in the LI-IGF-I(-/-) mice. In the 24-month-old mice, there was no between-group difference in kidney morphology. Microarray and real-time PCR (RT-PCR) analyses showed a high renal expression of IGF-II in the control mice, whereas in the LI-IGF-I(-/-) mice, there was a tissue-specific decrease in the renal IGF-II mRNA levels (-79%, P < 0.001 vs controls using RT-PCR). In conclusion, deficiency of circulating liver-derived IGF-I in mice results, despite an increase in GH secretion, in a global symmetrical decrease in kidney size, increased urinary sodium and potassium excretion, and a clear down regulation of renal IGF-II expression. However, the LI-IGF-I(-/-) mice did not develop kidney failure or nephrosclerosis. One may speculate that liver-derived endocrine IGF-I induces renal IGF-II expression, resulting in symmetrical renal growth.
  •  
2.
  • Ohlsson, Claes, 1965, et al. (författare)
  • The role of liver-derived insulin-like growth factor-I.
  • 2009
  • Ingår i: Endocrine reviews. - : The Endocrine Society. - 1945-7189 .- 0163-769X. ; 30:5, s. 494-535
  • Forskningsöversikt (refereegranskat)abstract
    • IGF-I is expressed in virtually every tissue of the body, but with much higher expression in the liver than in any other tissue. Studies using mice with liver-specific IGF-I knockout have demonstrated that liver-derived IGF-I, constituting a major part of circulating IGF-I, is an important endocrine factor involved in a variety of physiological and pathological processes. Detailed studies comparing the impact of liver-derived IGF-I and local bone-derived IGF-I demonstrate that both sources of IGF-I can stimulate longitudinal bone growth. We propose here that liver-derived circulating IGF-I and local bone-derived IGF-I to some extent have overlapping growth-promoting effects and might have the capacity to replace each other (= redundancy) in the maintenance of normal longitudinal bone growth. Importantly, and in contrast to the regulation of longitudinal bone growth, locally derived IGF-I cannot replace (= lack of redundancy) liver-derived IGF-I for the regulation of a large number of other parameters including GH secretion, cortical bone mass, kidney size, prostate size, peripheral vascular resistance, spatial memory, sodium retention, insulin sensitivity, liver size, sexually dimorphic liver functions, and progression of some tumors. It is clear that a major role of liver-derived IGF-I is to regulate GH secretion and that some, but not all, of the phenotypes in the liver-specific IGF-I knockout mice are indirect, mediated via the elevated GH levels. All of the described multiple endocrine effects of liver-derived IGF-I should be considered in the development of possible novel treatment strategies aimed at increasing or reducing endocrine IGF-I activity.
  •  
3.
  • Svensson, Johan, 1964, et al. (författare)
  • Bone-Derived IGF-I Regulates Radial Bone Growth in Adult Male Mice
  • 2023
  • Ingår i: Endocrinology. - 0013-7227. ; 164:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin-like growth factor-I (IGF-I) levels, which are reduced by age, and cortical bone dimensions are major determinants of fracture risk in elderly subjects. Inactivation of liver-derived circulating IGF-I results in reduced periosteal bone expansion in young and older mice. In mice with lifelong depletion of IGF-I in osteoblast lineage cells, the long bones display reduced cortical bone width. However, it has not previously been investigated whether inducible inactivation of IGF-I locally in bone in adult/old mice affects the bone phenotype. Adult tamoxifen-inducible inactivation of IGF-I using a CAGG-CreER mouse model (inducible IGF-I-KO mice) substantially reduced IGF-I expression in bone (-55%) but not in liver. Serum IGF-I and body weight were unchanged. We used this inducible mouse model to assess the effect of local IGF-I on the skeleton in adult male mice, avoiding confounding developmental effects. After tamoxifen-induced inactivation of the IGF-I gene at 9 months of age, the skeletal phenotype was determined at 14 months of age. Computed tomography analyses of tibia revealed that the mid-diaphyseal cortical periosteal and endosteal circumferences and calculated bone strength parameters were decreased in inducible IGF-I-KO mice compared with controls. Furthermore, 3-point bending showed reduced tibia cortical bone stiffness in inducible IGF-I-KO mice. In contrast, the tibia and vertebral trabecular bone volume fraction was unchanged. In conclusion, inactivation of IGF-I in cortical bone with unchanged liver-derived IGF-I in older male mice resulted in reduced radial growth of cortical bone. This suggests that not only circulating IGF-I but also locally derived IGF-I regulates the cortical bone phenotype in older mice.
  •  
4.
  •  
5.
  • Svensson, Johan, 1964, et al. (författare)
  • Increased diet-induced fatty streak formation in female mice with deficiency of liver-derived insulin-like growth factor-I.
  • 2016
  • Ingår i: Endocrine. - : Springer Science and Business Media LLC. - 1559-0100 .- 1355-008X. ; 52:3, s. 550-560
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of endocrine IGF-I for atherosclerosis is unclear. We determined the importance of circulating, liver-derived IGF-I for fatty streak formation in mice. Mice with adult, liver-specific IGF-I inactivation (LI-IGF-I(-/-) mice, serum IGF-I reduced by approximately 80%) and control mice received an atherogenic (modified Paigen) diet between 6 and 12months of age. At study end, Oil Red O staining of aortic root cryosections showed increased fatty streak area and lipid deposition in female but not in male LI-IGF-I(-/-) mice compared to controls. Mac-2 staining of aortic root and measurements of CD68 mRNA level in femoral artery revealed increased macrophage accumulation in proportion to the increased fatty streak area in female LI-IGF-I(-/-) mice. Moreover, female LI-IGF-I(-/-) mice displayed increased serum cholesterol and interleukin-6 as well as increased vascular cell-adhesion molecule 1 (VCAM1) mRNA levels in the femoral artery and elevated VCAM1 protein expression in the aortic root. Thus, increased diet-induced fatty streak formation in female LI-IGF-I(-/-) mice was associated with increased serum cholesterol and signs of systemic inflammation, endothelial activation, lipid deposition, and macrophage infiltration in the vascular wall.
  •  
6.
  • Svensson, Johan, 1964, et al. (författare)
  • Liver-derived IGF-I regulates cortical bone mass but is dispensable for the osteogenic response to mechanical loading in female mice
  • 2016
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 311:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low circulating IGF-I is associated with increased fracture risk. Conditional depletion of IGF-I produced in osteoblasts or osteocytes inhibits the bone anabolic effect of mechanical loading. Here, we determined the role of endocrine IGF-I for the osteogenic response to mechanical loading in young adult and old female mice with adult, liver-specific IGF-I inactivation (LI-IGF-I-/- mice, serum IGF-I reduced by approximate to 70%) and control mice. The right tibia was subjected to short periods of axial cyclic compressive loading three times/wk for 2 wk, and measurements were performed using microcomputed tomography and mechanical testing by three-point bending. In the nonloaded left tibia, the LI-IGF-I-/- mice had lower cortical bone area and increased cortical porosity, resulting in reduced bone mechanical strength compared with the controls. Mechanical loading induced a similar response in LI-IGF-I-/- and control mice in terms of cortical bone area and trabecular bone volume fraction. In fact, mechanical loading produced a more marked increase in cortical bone mechanical strength, which was associated with a less marked increase in cortical porosity, in the LI-IGF-I-/- mice compared with the control mice. In conclusion, liver-derived IGF-I regulates cortical bone mass, cortical porosity, and mechanical strength under normal (nonloaded) conditions. However, despite an similar to 70% reduction in circulating IGF-I, the osteogenic response to mechanical loading was not attenuated in the LI-IGF-I-/- mice.
  •  
7.
  • Svensson, Johan, 1964, et al. (författare)
  • Liver-derived IGF-I regulates exploratory activity in old mice.
  • 2005
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 289:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth hormone (GH) replacement in hypopituitary patients improves well-being and initiative. Experimental studies indicate that these psychic effects may be reflected in enhanced locomotor activity in mice. It is unknown whether these phenomena are mediated directly by GH or by circulating IGF-I. IGF-I production in the liver was inactivated at 6-10 wk of age (LI-IGF-I-/- mice), resulting in an 80-85% reduction of circulating IGF-I, and, secondary to this, increased GH secretion. Using activity boxes on three different occasions during 1 wk, 6-mo-old LI-IGF-I-/- mice had similar activity levels, and 14-mo-old mice had a moderate but significant decrease in activity level, compared with control mice. At 20 mo of age, the LI-IGF-I-/- mice displayed a more prominent decrease in activity level with decreased horizontal activity throughout the test period, and at day 1, there were several signs of an altered habituation process with different time patterns of locomotor activity and horizontal activity compared with the control mice. At days 3 and 5, rearing activity was lower in the 20-mo-old LI-IGF-I-/- mice. Anxiety level was unaffected in all age groups, as measured using the Montgomery's elevated plus-maze. In conclusion, old LI-IGF-I-/- mice displayed a decrease in both horizontal and rearing (exploratory) activity level and an altered habituation process. These results indicate that liver-derived IGF-I mediates at least part of the effects of GH on exploratory activity in mice.
  •  
8.
  • Svensson, Johan, 1964, et al. (författare)
  • Liver-derived igf-I regulates mean life span in mice
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Transgenic mice with low levels of global insulin-like growth factor-I (IGF-I) throughout their life span, including pre- and postnatal development, have increased longevity. This study investigated whether specific deficiency of liver-derived, endocrine IGF-I is of importance for life span.
  •  
9.
  • Svensson, Johan, 1964, et al. (författare)
  • Liver-derived IGF1 enhances the androgenic response in prostate.
  • 2008
  • Ingår i: The Journal of endocrinology. - 1479-6805. ; 199:3, s. 489-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Both IGF1 and androgens are major enhancers of prostate growth and are implicated in the development of prostate hyperplasia and cancer. The aim of the present study was to investigate whether liver-derived endocrine IGF1 modulates the androgenic response in prostate. Mice with adult, liver-specific inactivation of IGF1 (LI-IGF1(-/-) mice) displayed an approximately 80% reduction in serum IGF1 levels associated with decreased prostate weight compared with control mice (anterior prostate lobe -19%, P<0.05; dorsolateral prostate (DLP) lobe -35%, P<0.01; ventral prostate (VP) lobe -47%, P<0.01). Reduced androgen receptor (Ar) mRNA and protein levels were observed in the VP lobe (-34% and -30% respectively, both P<0.05 versus control mice). Analysis of prostate morphology showed reductions in both the glandular and fibromuscular compartments of the VP and DLP lobes that were proportional to the reductions in the weights of these lobes. Immunohistochemistry revealed reduced intracellular AR immunoreactivity in the VP and DLP lobes. The non-aromatizable androgen dihydrotestosterone increased VP weight to a lesser extent in orchidectomized (ORX) LI-IGF1(-/-) mice than in ORX controls (-40%, P<0.05 versus control mice). In conclusion, deficiency of liver-derived IGF1 reduces both the glandular and fibromuscular compartments of the prostate, decreases AR expression in prostate, and reduces the stimulatory effect of androgens on VP weight. These findings may explain, at least in part, the well-known clinical association between serum IGF1 levels and conditions with abnormal prostate growth.
  •  
10.
  • Svensson, Johan, 1964, et al. (författare)
  • Stimulation of both estrogen and androgen receptors maintains skeletal muscle mass in gonadectomized male mice but mainly via different pathways.
  • 2010
  • Ingår i: Journal of molecular endocrinology. - 1479-6813. ; 45:1, s. 45-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Testosterone is a major regulator of muscle mass. Little is known whether this is due to a direct stimulation of the androgen receptor (AR) or mediated by aromatization of testosterone to estradiol (E(2)), the ligand for the estrogen receptors (ERs), in peripheral tissues. In this study, we differentiated between the effects mediated by AR and ER by treating orchidectomized (orx) male mice for 5 weeks with E(2) or the non-aromatizable androgen dihydrotestosterone (DHT). Both E(2) and DHT increased muscle weight and lean mass, although the effect was less marked after E(2) treatment. Studies of underlying mechanisms were performed using gene transcript profiling (microarray and real-time PCR) in skeletal muscle, and they demonstrated that E(2) regulated 51 genes and DHT regulated 187 genes, with 13 genes (=25% of E(2)-regulated genes) being regulated by both treatments. Both E(2) and DHT altered the expression of Fbxo32, a gene involved in skeletal muscle atrophy, affected the IGF1 system, and regulated genes involved in angiogenesis and the glutathione metabolic process. Only E(2) affected genes that regulate intermediary glucose and lipid metabolism, and only DHT increased the expression of genes involved in synaptic transmission and heme and polyamine biosynthesis. In summary, ER activation by E(2) treatment maintains skeletal muscle mass after orx. This effect is less marked than that of AR activation by DHT treatment, which completely prevented the effect of orx on muscle mass and was partly, but not fully, mediated via alternative pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy