SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smielewski Peter) ;pers:(Koskinen Lars Owe D. Professor 1955)"

Sökning: WFRF:(Smielewski Peter) > Koskinen Lars Owe D. Professor 1955

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mathieu, François, et al. (författare)
  • Relationship between Measures of CerebrovascularReactivity and Intracranial Lesion Progressionin Acute Traumatic Brain Injury Patients:A CENTER-TBI Study
  • 2020
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 37:13, s. 1556-1565
  • Tidskriftsartikel (refereegranskat)abstract
    • Failure of cerebral autoregulation has been linked to unfavorable outcome after traumatic brain injury (TBI). Preliminary evidence from a small, retrospective, single-center analysis suggests that autoregulatory dysfunction may be associated with traumatic lesion expansion, particularly for pericontusional edema. The goal of this study was to further explore these associations using prospective, multi-center data from the Collaborative European Neurotrauma Effectiveness Research in TBI (CENTER-TBI) and to further explore the relationship between autoregulatory failure, lesion progression, and patient outcome. A total of 88 subjects from the CENTER-TBI High Resolution ICU Sub-Study cohort were included. All patients had an admission computed tomography (CT) scan and early repeat scan available, as well as high-frequency neurophysiological recordings covering the between-scan interval. Using a novel, semiautomated approach at lesion segmentation, we calculated absolute changes in volume of contusion core, pericontusional edema, and extra-axial hemorrhage between the imaging studies. We then evaluated associations between cerebrovascular reactivity metrics and radiological lesion progression using mixed-model regression. Analyses were adjusted for baseline covariates and non-neurophysiological factors associated with lesion growth using multi-variate methods. Impairment in cerebrovascular reactivity was significantly associated with progression of pericontusional edema and, to a lesser degree, intraparenchymal hemorrhage. In contrast, there were no significant associations with extra-axial hemorrhage. The strongest relationships were observed between RAC-based metrics and edema formation. Pulse amplitude index showed weaker, but consistent, associations with contusion growth. Cerebrovascular reactivity metrics remained strongly associated with lesion progression after taking into account contributions from non-neurophysiological factors and mean cerebral perfusion pressure. Total hemorrhagic core and edema volumes on repeat CT were significantly larger in patients who were deceased at 6 months, and the amount of edema was greater in patients with an unfavourable outcome (Glasgow Outcome Scale-Extended 1–4). Our study suggests associations between autoregulatory failure, traumatic edema progression, and poor outcome. This is in keeping with findings from a single-center retrospective analysis, providing multi-center prospective data to support those results.
  •  
2.
  • Zeiler, Frederick A., et al. (författare)
  • Association between Physiological Signal Complexity and Outcomes in Moderate and Severe Traumatic Brain Injury : A CENTER-TBI Exploratory Analysis of Multi-Scale Entropy
  • 2021
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 38:2, s. 272-282
  • Tidskriftsartikel (refereegranskat)abstract
    • In traumatic brain injury (TBI), preliminary retrospective work on signal entropy suggests an association with global outcome. The goal of this study was to provide multi-center validation of the association between multi-scale entropy (MSE) of cardiovascular and cerebral physiological signals, with six-month outcome. Using the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) high-resolution intensive care unit (ICU) cohort, we selected patients with a minimum of 72 h of physiological recordings and a documented six-month Glasgow Outcome Scale Extended (GOSE) score. The 10-sec summary data for heart rate (HR), mean arterial pressure (MAP), intracranial pressure (ICP), and pulse amplitude of ICP (AMP) were derived across the first 72 h of data. The MSE complexity index (MSE-Ci) was determined for HR, MAP, ICP, and AMP, with the association between MSE and dichotomized six-month outcomes assessed using Mann-Whitney U testing and logistic regression analysis. A total of 160 patients had a minimum of 72 h of recording and a documented outcome. Decreased HR MSE-Ci (7.3 [interquartile range (IQR) 5.4 to 10.2] vs. 5.1 [IQR 3.1 to 7.0]; p = 0.002), lower ICP MSE-Ci (11.2 [IQR 7.5 to 14.2] vs. 7.3 [IQR 6.1 to 11.0]; p = 0.009), and lower AMP MSE-Ci (10.9 [IQR 8.0 to 13.7] vs. 8.7 [IQR 6.6 to 11.0]; p = 0.022), were associated with death. Similarly, lower HR MSE-Ci (8.0 [IQR 6.2 to 10.9] vs. 6.2 [IQR 3.9 to 8.7]; p = 0.003) and lower ICP MSE-Ci (11.4 [IQR 8.6 to 14.4)] vs. 9.2 [IQR 6.0 to 13.5]), were associated with unfavorable outcome. Logistic regression analysis confirmed that lower HR MSE-Ci and ICP MSE-Ci were associated with death and unfavorable outcome at six months. These findings suggest that a reduction in cardiovascular and cerebrovascular system entropy is associated with worse outcomes. Further work in the field of signal complexity in TBI multi-modal monitoring is required.
  •  
3.
  • Zeiler, Frederick A, et al. (författare)
  • Brain tissue oxygen and cerebrovascular reactivity in traumatic brain injury : a collaborative european neurotrauma effectiveness research in traumatic brain injury exploratory analysis of insult burden
  • 2020
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 37:17, s. 1854-1863
  • Tidskriftsartikel (refereegranskat)abstract
    • Pressure reactivity index (PRx) and brain tissue oxygen (PbtO2) are associated with outcome in traumatic brain injury (TBI). This study explores the relationship between PRx and PbtO2 in adult moderate/severe TBI. Using the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) high resolution intensive care unit (ICU) sub-study cohort, we evaluated those patients with archived high-frequency digital intraparenchymal intracranial pressure (ICP) and PbtO2 monitoring data of, a minimum of 6 h in duration, and the presence of a 6 month Glasgow Outcome Scale -Extended (GOSE) score. Digital physiological signals were processed for ICP, PbtO2, and PRx, with the % time above/below defined thresholds determined. The duration of ICP, PbtO2, and PRx derangements was characterized. Associations with dichotomized 6-month GOSE (alive/dead, and favorable/unfavorable outcome; ≤ 4 = unfavorable), were assessed. A total of 43 patients were included. Severely impaired cerebrovascular reactivity was seen during elevated ICP and low PbtO2 episodes. However, most of the acute ICU physiological derangements were impaired cerebrovascular reactivity, not ICP elevations or low PbtO2 episodes. Low PbtO2 without PRx impairment was rarely seen. % time spent above PRx threshold was associated with mortality at 6 months for thresholds of 0 (area under the curve [AUC] 0.734, p = 0.003), > +0.25 (AUC 0.747, p = 0.002) and > +0.35 (AUC 0.745, p = 0.002). Similar relationships were not seen for % time with ICP >20 mm Hg, and PbtO2 < 20 mm Hg in this cohort. Extreme impairment in cerebrovascular reactivity is seen during concurrent episodes of elevated ICP and low PbtO2. However, the majority of the deranged cerebral physiology seen during the acute ICU phase is impairment in cerebrovascular reactivity, with most impairment occurring in the presence of normal PbtO2 levels. Measures of cerebrovascular reactivity appear to display the most consistent associations with global outcome in TBI, compared with ICP and PbtO2.
  •  
4.
  • Zeiler, Frederick A., et al. (författare)
  • Evaluation of the relationship between slow-waves of intracranial pressure, mean arterial pressure and brain tissue oxygen in TBI : a CENTER-TBI exploratory analysis
  • 2021
  • Ingår i: Journal of clinical monitoring and computing. - : Springer Berlin/Heidelberg. - 1387-1307 .- 1573-2614. ; 35:4, s. 711-722
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain tissue oxygen (PbtO2) monitoring in traumatic brain injury (TBI) has demonstrated strong associations with globaloutcome. Additionally, PbtO2 signals have been used to derive indices thought to be associated with cerebrovascular reactivityin TBI. However, their true relationship to slow-wave vasogenic fuctuations associated with cerebral autoregulation remainsunclear. The goal of this study was to investigate the relationship between slow-wave fuctuations of intracranial pressure(ICP), mean arterial pressure (MAP) and PbtO2 over time. Using the Collaborative European NeuroTrauma EfectivenessResearch in Traumatic Brain Injury (CENTER-TBI) high resolution ICU sub-study cohort, we evaluated those patients withrecorded high-frequency digital intra-parenchymal ICP and PbtO2 monitoring data of a minimum of 6 h in duration. Digitalphysiologic signals were processed for ICP, MAP, and PbtO2 slow-waves using a moving average flter to decimate the highfrequency signal. The frst 5 days of recording were analyzed. The relationship between ICP, MAP and PbtO2 slow-wavesover time were assessed using autoregressive integrative moving average (ARIMA) and vector autoregressive integrativemoving average (VARIMA) modelling, as well as Granger causality testing. A total of 47 patients were included. The ARIMAstructure of ICP and MAP were similar in time, where PbtO2 displayed diferent optimal structure. VARIMA modellingand IRF plots confrmed the strong directional relationship between MAP and ICP, demonstrating an ICP response to MAPimpulse. PbtO2 slow-waves, however, failed to demonstrate a defnite response to ICP and MAP slow-wave impulses. Theseresults raise questions as to the utility of PbtO2 in the derivation of cerebrovascular reactivity measures in TBI. There isa reproducible relationship between slow-wave fuctuations of ICP and MAP, as demonstrated across various time-seriesanalytic techniques. PbtO2 does not appear to reliably respond in time to slow-wave fuctuations in MAP, as demonstratedon various VARIMA models across all patients. These fndings suggest that PbtO2 should not be utilized in the derivationof cerebrovascular reactivity metrics in TBI, as it does not appear to be responsive to changes in MAP in the slow-waves.These fndings corroborate previous results regarding PbtO2 based cerebrovascular reactivity indices. 
  •  
5.
  • Rass, Verena, et al. (författare)
  • The Effect of Temperature Increases on Brain Tissue Oxygen Tension in Patients with Traumatic Brain Injury : A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Substudy
  • 2021
  • Ingår i: Therapeutic Hypothermia and Temperature Management. - : Mary Ann Liebert. - 2153-7658 .- 2153-7933. ; 11:2, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Fever may aggravate secondary brain injury after traumatic brain injury (TBI). The aim of this study was to identify episodes of temperature increases through visual plot analysis and algorithm supported detection, and to describe associated patterns of changes in on brain tissue oxygen tension (PbtO2). Data derive from the high-resolution cohort of the multicenter prospective Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study. Temperature increases (≥0.5°C) were visually identified in 33 patients within the first 11 days of monitoring. Generalized estimating equations were used to detect significant changes of systemic and neuromonitoring parameters from baseline to the highest temperature. Patients were median 50 (interquartile range [IQR], 35–62) years old, and presented with a Glasgow Coma Scale (GCS) of 8 (IQR, 4–10). In 202 episodes of temperature increases, mean temperature rose by 1.0°C ± 0.5°C within 4 hours. Overall, PbtO2 slightly increased (ΔPbtO2 = 0.9 ± 6.1 mmHg, p = 0.022) during temperature increases. PbtO2 increased in 35% (p < 0.001), was stable in 49% (p = 0.852), and decreased in 16% (p < 0.001) of episodes. During episodes of temperature increases and simultaneous drops in PbtO2, cerebral perfusion pressure (CPP) decreased (ΔCPP −6.3 ± 11.5 mmHg; p < 0.001). Brain tissue hypoxia (PbtO2 <20 mmHg) developed during 27/164 (17%) episodes of effervescences, in the remaining 38/202 episodes baseline PbtO2 was already <20 mmHg. Comparable results were found when using algorithm-supported detection of temperature increases. In conclusion, during effervescences, PbtO2 was mostly stable or slightly increased. A decrease of PbtO2 was observed in every sixth episode, where it was associated with a decrease in CPP. Our data highlight the need for special attention to CPP monitoring and maintenance during episodes of fever.
  •  
6.
  • Riemann, Lennart, et al. (författare)
  • Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury : a CENTER-TBI study
  • 2020
  • Ingår i: Critical Care. - : BioMed Central. - 1364-8535 .- 1466-609X. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: After traumatic brain injury (TBI), brain tissue can be further damaged when cerebral autoregulation is impaired. Managing cerebral perfusion pressure (CPP) according to computed "optimal CPP" values based on cerebrovascular reactivity indices might contribute to preventing such secondary injuries. In this study, we examined the discriminative value of a low-resolution long pressure reactivity index (LPRx) and its derived "optimal CPP" in comparison to the well-established high-resolution pressure reactivity index (PRx).Methods: Using the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study dataset, the association of LPRx (correlation between 1-min averages of intracranial pressure and arterial blood pressure over a moving time frame of 20 min) and PRx (correlation between 10-s averages of intracranial pressure and arterial blood pressure over a moving time frame of 5 min) to outcome was assessed and compared using univariate and multivariate regression analysis. "Optimal CPP" values were calculated using a multi-window algorithm that was based on either LPRx or PRx, and their discriminative ability was compared.Results: LPRx and PRx were both significant predictors of mortality in univariate and multivariate regression analysis, but PRx displayed a higher discriminative ability. Similarly, deviations of actual CPP from "optimal CPP" values calculated from each index were significantly associated with outcome in univariate and multivariate analysis. "Optimal CPP" based on PRx, however, trended towards more precise predictions.Conclusions: LPRx and its derived "optimal CPP" which are based on low-resolution data were significantly associated with outcome after TBI. However, they did not reach the discriminative ability of the high-resolution PRx and its derived "optimal CPP." Nevertheless, LPRx might still be an interesting tool to assess cerebrovascular reactivity in centers without high-resolution signal monitoring.Trial registration: ClinicalTrials.gov Identifier: NCT02210221. First submitted July 29, 2014. First posted August 6, 2014.
  •  
7.
  • Zeiler, Frederick A., et al. (författare)
  • Diffuse intracranial injury patterns are associated with impaired cerebrovascular reactivity in adult traumatic brain injury : a CENTER-TBI validation study
  • 2020
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 37:4, s. 1597-1608
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent single-center retrospective analysis displayed the association between admission computed tomography (CT) markers of diffuse intracranial injury and worse cerebrovascular reactivity. The goal of this study was to further explore these associations using the prospective multi-center Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) high-resolution intensive care unit (HR ICU) data set. Using the CENTER-TBI HR ICU sub-study cohort, we evaluated those patients with both archived high-frequency digital physiology (100 Hz or higher) and the presence of a digital admission CT scan. Physiological signals were processed for pressure reactivity index (PRx) and both the percent (%) time above defined PRx thresholds and mean hourly dose above threshold. Admission CT injury scores were obtained from the database. Quantitative contusion, edema, intraventricular hemorrhage (IVH), and extra-axial lesion volumes were obtained via semi-automated segmentation. Comparison between admission CT characteristics and PRx metrics was conducted using Mann-U, Jonckheere-Terpstra testing, with a combination of univariate linear and logistic regression techniques. A total of 165 patients were included. Cisternal compression and high admission Rotterdam and Helsinki CT scores, and Marshall CT diffuse injury sub-scores were associated with increased percent (%) time and hourly dose above PRx threshold of 0, +0.25, and +0.35 (p < 0.02 for all). Logistic regression analysis displayed an association between deep peri-contusional edema and mean PRx above a threshold of +0.25. These results suggest that diffuse injury patterns, consistent with acceleration/deceleration forces, are associated with impaired cerebrovascular reactivity. Diffuse admission intracranial injury patterns appear to be consistently associated with impaired cerebrovascular reactivity, as measured through PRx. This is in keeping with the previous single-center retrospective literature on the topic. This study provides multi-center validation for those results, and provides preliminary data to support potential risk stratification for impaired cerebrovascular reactivity based on injury pattern.
  •  
8.
  • Zeiler, Frederick A., et al. (författare)
  • Patient-specific ICP Epidemiologic Thresholds in Adult Traumatic Brain Injury : A CENTER-TBI Validation Study
  • 2019
  • Ingår i: Journal of Neurosurgical Anesthesiology. - : Wolters Kluwer. - 0898-4921 .- 1537-1921.
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Patient-specific epidemiologic intracranial pressure (ICP) thresholds in adult traumatic brain injury (TBI) have emerged, using the relationship between pressure reactivity index (PRx) and ICP, displaying stronger association with outcome over existing guideline thresholds. The goal of this study was to explore this relationship in a multi-center cohort in order to confirm the previous finding.METHODS: Using the Collaborative European Neuro Trauma Effectiveness Research in TBI (CENTER-TBI) high-resolution intensive care unit cohort, we derived individualized epidemiologic ICP thresholds for each patient using the relationship between PRx and ICP. Mean hourly dose of ICP was calculated for every patient for the following thresholds: 20, 22 mm Hg and the patient's individual ICP threshold. Univariate logistic regression models were created comparing mean hourly dose of ICP above thresholds to dichotomized outcome at 6 to 12 months, based on Glasgow Outcome Score-Extended (GOSE) (alive/dead-GOSE≥2/GOSE=1; favorable/unfavorable-GOSE 5 to 8/GOSE 1 to 4, respectively).RESULTS: Individual thresholds were identified in 65.3% of patients (n=128), in keeping with previous results (23.0±11.8 mm Hg [interquartile range: 14.9 to 29.8 mm Hg]). Mean hourly dose of ICP above individual threshold provides superior discrimination (area under the receiver operating curve [AUC]=0.678, P=0.029) over mean hourly dose above 20 mm Hg (AUC=0.509, P=0.03) or above 22 mm Hg (AUC=0.492, P=0.035) on univariate analysis for alive/dead outcome at 6 to 12 months. The AUC for mean hourly dose above individual threshold trends to higher values for favorable/unfavorable outcome, but fails to reach statistical significance (AUC=0.610, P=0.060). This was maintained when controlling for baseline admission characteristics.CONCLUSIONS: Mean hourly dose of ICP above individual epidemiologic ICP threshold has stronger associations with mortality compared with the dose above Brain Trauma Foundation defined thresholds of 20 or 22 mm Hg, confirming prior findings. Further studies on patient-specific epidemiologic ICP thresholds are required.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy