SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smith Benjamin) ;hsvcat:2"

Sökning: WFRF:(Smith Benjamin) > Teknik

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  •  
4.
  • Ahlström, Anders, et al. (författare)
  • GCM characteristics explain the majority of uncertainty in projected 21st century terrestrial ecosystem carbon balance
  • 2012
  • Ingår i: Biogeosciences Discussions. - : Copernicus GmbH. - 1810-6277. ; 9, s. 13685-13712
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • One of the largest sources of uncertainties in modelling of the future global climate is the response of the terrestrial carbon cycle. Studies have shown that it is likely that the extant land sink of carbon will weaken in a warming climate. Should this happen, a larger portion of the annual carbon dioxide emissions will remain in the atmosphere, and further increase global warming, which in turn may further weaken the land sink. We investigate the potential sensitivity of global terrestrial ecosystem carbon balance to differences in future climate simulated by four general circulation models (GCMs) under three different CO2 concentration scenarios. We find that the response in simulated carbon balance is more influenced by GCMs than CO2 concentration scenarios. Empirical orthogonal function (EOF) analysis of sea surface temperatures (SSTs) reveals differences among GCMs in simulated SST variability leading to decreased tropical ecosystem productivity in two out of four GCMs. We extract parameters describing GCM characteristics by parameterizing a statistical emulator mimicking the carbon balance response simulated by a full dynamic ecosystem model. By sampling two GCM-specific parameters and global temperatures we create 60 new "artificial" GCMs and investigate the extent to which the GCM characteristics may explain the uncertainty in global carbon balance under future radiative forcing. Differences among GCMs in the representation of SST variability and ENSO and its effect on precipitation and temperature patterns explain the majority of the uncertainty in the future evolution of global terrestrial ecosystem carbon in our analysis. We suggest that the characterisation and evaluation of patterns and trends in simulated SST variability should be a priority for the further development of GCMs, in particular as vegetation dynamics and carbon cycle feedbacks are incorporated.
  •  
5.
  • Ahlström, Anders, et al. (författare)
  • GCM characteristics explain the majority of uncertainty in projected 21st century terrestrial ecosystem carbon balance
  • 2013
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 10:3, s. 1517-1528
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the largest sources of uncertainties in modelling of the future global climate is the response of the terrestrial carbon cycle. Studies have shown that it is likely that the extant land sink of carbon will weaken in a warming climate. Should this happen, a larger portion of the annual carbon dioxide emissions will remain in the atmosphere, and further increase global warming, which in turn may further weaken the land sink. We investigate the potential sensitivity of global terrestrial ecosystem carbon balance to differences in future climate simulated by four general circulation models (GCMs) under three different CO2 concentration scenarios. We find that the response in simulated carbon balance is more influenced by GCMs than CO2 concentration scenarios. Empirical orthogonal function (EOF) analysis of sea surface temperatures (SSTs) reveals differences among GCMs in simulated SST variability leading to decreased tropical ecosystem productivity in two out of four GCMs. We extract parameters describing GCM characteristics by parameterizing a statistical emulator mimicking the carbon balance response simulated by a full dynamic ecosystem model. By sampling two GCM-specific parameters and global temperatures we create 60 new "artificial" GCMs and investigate the extent to which the GCM characteristics may explain the uncertainty in global carbon balance under future radiative forcing. Differences among GCMs in the representation of SST variability and ENSO and its effect on precipitation and temperature patterns explain the majority of the uncertainty in the future evolution of global terrestrial ecosystem carbon in our analysis. We suggest that the characterisation and evaluation of patterns and trends in simulated SST variability should be a priority for the further development of GCMs, in particular as vegetation dynamics and carbon cycle feedbacks are incorporated.
  •  
6.
  • Blösch, Günter, et al. (författare)
  • Twenty-three unsolved problems in hydrology (UPH) - a community perspective
  • 2019
  • Ingår i: Hydrological Sciences Journal. - : Informa UK Limited. - 0262-6667 .- 2150-3435. ; 64:10, s. 1141-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
  •  
7.
  • Lee-Smith, Matthew L., et al. (författare)
  • Data as a material for design : alternative narratives, divergent pathways, and future directions
  • 2023
  • Ingår i: CHI EA '23. - : ACM Digital Library. - 9781450394222
  • Konferensbidrag (refereegranskat)abstract
    • This one-day workshop will bring together a diverse group of practitioners and researchers within the CHI community to discuss and explore data's increasing use as a material for design. This workshop encourages the submission of design exemplars, i.e., physical or digital works (in progress), design processes, or provocative or controversial pieces on the topic of data as a design material. If we are to continue to explore what data means as a design material and how we will continue to co-exist with them in our everyday lives through new and exciting ways and means, we must develop new strategies, tactics, tools, and outcomes. By bringing together products, processes, and provocations, this workshop will nurture and extend the continuation of research inquiring into data as a design material in its many forms. Our workshop will be conducted through physical and digital activities before, during, and after the onsite event at CHI 2023.
  •  
8.
  • Long, Jingchao, et al. (författare)
  • Large-scale photovoltaic solar farms in the Sahara affect solar power generation potential globally
  • 2024
  • Ingår i: Communications Earth & Environment. - 2662-4435. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, solar projects are being rapidly built or planned, particularly in high solar potential regions with high energy demand. However, their energy generation potential is highly related to the weather condition. Here we use state-of-the-art Earth system model simulations to investigate how large photovoltaic solar farms in the Sahara Desert could impact the global cloud cover and solar generation potential through disturbed atmospheric teleconnections. The results indicate negative impacts on solar potential in North Africa (locally), Middle East, Southern Europe, India, Eastern China, Japan, Eastern Australia, and Southwestern US, and positive impacts in Central and South America, the Caribbean, Central & Eastern US, Scandinavia and South Africa, reaching a magnitude of ±5% in remote regions seasonally. Diagnostics suggest that large-scale atmospheric circulation changes are responsible for the global impacts. International cooperation is essential to mitigate the potential risks of future large-scale solar projects in drylands, which could impact energy production.
  •  
9.
  • Strandberg, Gustav, 1977-, et al. (författare)
  • High-resolution regional simulation of last glacial maximum climate in Europe
  • 2011
  • Ingår i: Tellus. Series A, Dynamic meteorology and oceanography. - : Stockholm University Press. - 0280-6495 .- 1600-0870. ; 63:1, s. 107-125
  • Tidskriftsartikel (refereegranskat)abstract
    • A fully coupled atmosphere-ocean general circulation model is used to simulate climate conditions during the last glacial maximum (LGM). Forcing conditions include astronomical parameters, greenhouse gases, ice sheets and vegetation. A 50-yr period of the global simulation is dynamically downscaled to 50 km horizontal resolution over Europe with a regional climate model (RCM). A dynamic vegetation model is used to produce vegetation that is consistent with the climate simulated by the RCM. This vegetation is used in a final simulation with the RCM. The resulting climate is 5-10 degrees C colder than the recent past climate (representative of year 1990) over ice-free parts of Europe as an annual average; over the ice-sheet up to 40 degrees C colder in winter." The average model-proxy error is about the same for summer and winter, for pollen-based proxies. The RCM results are within (outside) the uncertainty limits for winter (summer). Sensitivity studies performed with the RCM indicate that the simulated climate is sensitive to changes in vegetation, whereas the location of the ice sheet only affects the climate around the ice sheet. The RCM-simulated interannual variability in near surface temperature is significantly larger at LGM than in the recent past climate.
  •  
10.
  • Tinetti, Giovanna, et al. (författare)
  • The science of EChO
  • 2010
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 6:S276, s. 359-370
  • Tidskriftsartikel (refereegranskat)abstract
    • The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life. The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole. EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates. © International Astronomical Union 2011.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy