1. |
- Joffrin, E., et al.
(författare)
-
Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
- 2019
-
Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 59:11
-
Forskningsöversikt (refereegranskat)abstract
- For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
|
|
2. |
|
|
3. |
- Garcia, J., et al.
(författare)
-
Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions
- 2022
-
Ingår i: Nature Physics. - : Springer Nature. - 1745-2473 .- 1745-2481. ; In Press
-
Tidskriftsartikel (refereegranskat)abstract
- Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity.
|
|
4. |
- Mailloux, J., et al.
(författare)
-
Overview of JET results for optimising ITER operation
- 2022
-
Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
-
Forskningsöversikt (refereegranskat)abstract
- The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019-2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.
|
|
5. |
- Vega, J., et al.
(författare)
-
Disruption prediction with artificial intelligence techniques in tokamak plasmas
- 2022
-
Ingår i: Nature Physics. - 1745-2473. ; In Press
-
Forskningsöversikt (refereegranskat)abstract
- In nuclear fusion reactors, plasmas are heated to very high temperatures of more than 100 million kelvin and, in so-called tokamaks, they are confined by magnetic fields in the shape of a torus. Light nuclei, such as deuterium and tritium, undergo a fusion reaction that releases energy, making fusion a promising option for a sustainable and clean energy source. Tokamak plasmas, however, are prone to disruptions as a result of a sudden collapse of the system terminating the fusion reactions. As disruptions lead to an abrupt loss of confinement, they can cause irreversible damage to present-day fusion devices and are expected to have a more devastating effect in future devices. Disruptions expected in the next-generation tokamak, ITER, for example, could cause electromagnetic forces larger than the weight of an Airbus A380. Furthermore, the thermal loads in such an event could exceed the melting threshold of the most resistant state-of-the-art materials by more than an order of magnitude. To prevent disruptions or at least mitigate their detrimental effects, empirical models obtained with artificial intelligence methods, of which an overview is given here, are commonly employed to predict their occurrence—and ideally give enough time to introduce counteracting measures.
|
|
6. |
|
|
7. |
- Stroth, U., et al.
(författare)
-
Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
- 2022
-
Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
-
Tidskriftsartikel (refereegranskat)abstract
- An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
|
|
8. |
- Dey, Lankeswar, et al.
(författare)
-
Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare : Improved Orbital Parameters
- 2018
-
Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 866:1
-
Tidskriftsartikel (refereegranskat)abstract
- Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole (BBH) central engine of blazar OJ 287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ 287. We develop an approach that incorporates this effect into the BBH model for OJ 287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the BBH central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ 287's central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole no-hair theorem at the 10% level.
|
|
9. |
- Creely, A. J., et al.
(författare)
-
Overview of the SPARC tokamak
- 2020
-
Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
-
Tidskriftsartikel (refereegranskat)abstract
- The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field (B-0 = 12.2 T), compact (R-0 = 1.85 m, a = 0.57 m), superconducting, D-T tokamak with the goal of producing fusion gain Q > 2 from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of Q > 2 is achievable with conservative physics assumptions (H-98,H- y2 = 0.7) and, with the nominal assumption of H-98,H- y2 = 1, SPARC is projected to attain Q approximate to 11 and P-fusion approximate to 140 MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density (< n(e)> approximate to 3 x 10(20) m(-3)), high temperature (< Te > approximate to 7 keV) and high power density (P-fusion/V-plasma approximate to 7 MWm(-3)) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
|
|
10. |
- Izzo, V. A., et al.
(författare)
-
Runaway electron deconfinement in SPARC and DIII-D by a passive 3D coil
- 2022
-
Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:9
-
Tidskriftsartikel (refereegranskat)abstract
- The operation of a 3D coil-passively driven by the current quench (CQ) loop voltage-for the deconfinement of runaway electrons (REs) is modeled for disruption scenarios in the SPARC and DIII-D tokamaks. Nonlinear magnetohydrodynamic (MHD) modeling is carried out with the NIMROD code including time-dependent magnetic field boundary conditions to simulate the effect of the coil. Further modeling in some cases uses the ASCOT5 code to calculate advection and diffusion coefficients for REs based on the NIMROD-calculated fields, and the DREAM code to compute the runaway evolution in the presence of these transport coefficients. Compared with similar modeling in Tinguely et al (2021 Nucl. Fusion 61 124003), considerably more conservative assumptions are made with the ASCOT5 results, zeroing low levels of transport, particularly in regions in which closed flux surfaces have reformed. Of three coil geometries considered in SPARC, only the n = 1 coil is found to have sufficient resonant components to suppress the runaway current growth. Without the new conservative transport assumptions, full suppression of the RE current is maintained when the thermal quench MHD is included in the simulation or when the RE current is limited to 250kA, but when transport in closed flux regions is fully suppressed, these scenarios allow RE beams on the order of 1-2 MA to appear. Additional modeling is performed to consider the effects of the close ideal wall. In DIII-D, the CQ is modeled for both limited and diverted equilibrium shapes. In the limited shape, the onset of stochasticity is found to be insensitive to the coil current amplitude and governed largely by the evolution of the safety-factor profile. In both devices, prediction of the q-profile evolution is seen to be critical to predicting the later time effects of the coil.
|
|