SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sollerman Jesper) ;mspu:(doctoralthesis)"

Sökning: WFRF:(Sollerman Jesper) > Doktorsavhandling

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ergon, Mattias, 1967- (författare)
  • SN 2011dh and the progenitors of Type IIb supernovae
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Core-collapse supernovae (SNe) are the observed events following the collapse of the core of evolved massive stars. The gravitational energy released creates a powerful shock that disrupts the star and ejects the heated material into the surrounding circumstellar medium. The observed properties depend on the mass lost by the star, e.g. through stellar winds or mass transfer in binary systems, and the subject of this thesis is the class of Type IIb SNe, which are thought to have lost most, but not all of their hydrogen envelopes. A quite unique set of observations has recently been obtained for the Type IIb SN 2011dh, which was followed to more than a thousand days after the explosion, and observed by several groups at a wide range of wavelengths. In this work, the bulk portion of the ultraviolet to mid-infrared observations, as well as pre-explosion images of the progenitor star, are presented, discussed, and analysed. Lightcurve and spectral modelling of the SN observations, presented in this and related works, all suggest a progenitor of modest initial mass (<15 solar masses) with an extended and low-mass hydrogen envelope, consistent with what is found from the pre-explosion observations. Although mass-loss rates for single stars are uncertain, they are likely too weak to expel the hydrogen envelope for stars in this mass range. Therefore, an appealing alternative is mass-loss by Roche-lobe overflow in a binary system, as was likely the case for the Type IIb SN 1993J. Post-explosion observations have revealed a blue compact companion star blended with the fading SN 1993J, and a similar result has been claimed for SN 2011dh. The fact that some SNe arise from binary systems is not surprising given the large binary fraction observed for massive stars, and in this work, a grid of hydrodynamical SN models is used to infer modest initial masses (<15 solar masses) for most Type IIb SNe documented in the literature, suggesting that binary systems actually dominate the production of Type IIb SNe.
  •  
2.
  • Fremling, Christoffer, 1984- (författare)
  • Stripped-envelope supernovae discovered by the Palomar Transient Factory
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is based on research made by the intermediate Palomar Transient Factory [(i)PTF]. The focus is on stripped-envelope (SE) supernovae (SNe) discovered by (i)PTF, and it is closely tied to the research on the SE SN iPTF13bvn, that occurred in the nearby galaxy NGC 5806. This SN was initially thought to have been the explosion of a very massive Wolf-Rayet star, but we have shown that this is very likely not the case. We suggest instead that iPTF13bvn originated from a binary system where the envelope was stripped off from the SN progenitor by tidal forces from a companion (Paper I). PTF12os exploded in the same galaxy as iPTF13bvn, and our analysis shows that PTF12os and  iPTF13bvn were very similar, and that both were also remarkably similar to the Type IIb SN 2011dh, in terms of their light-curves and spectra. In Paper II, hydrodynamical models were used to constrain the explosion parameters of iPTF13bvn, PTF12os and SN 2011dh; finding 56Ni masses in the range 0.063-0.075 solar masses (Ms), ejecta masses in the range 1.85-1.91 Ms, and kinetic energies in the range 0.54-0.94 x 1051 erg. Furthermore, using nebular models and late-time spectroscopy we were able to constrain the Zero-Age Main Sequence (ZAMS) mass to ~ 12 Ms, for iPTF13bvn and ≤ 15 Ms for PTF12os. In current stellar evolution models, stars with these masses on the ZAMS cannot lose their envelopes and become SE SNe without binary interactions. In Paper III we investigate a peculiar SE SN, iPTF15dtg; this SN lacks both hydrogen and helium and shows a double-peaked LC with a broad main LC peak. Using hydrodynamical modeling we show that iPTF15dtg had a very large ejecta mass (~ 10 Ms), resulting from an explosion of a very massive star (~ 35 Ms). The initial peak in the LC can be explained by the presence of extended material around the star, likely due to an episode of strong mass-loss experienced by the progenitor prior to the explosion. In Paper IV we perform a statistical study of the spectra of all 176 SE SNe (Type IIb, Ib and Ic) discovered by (i)PTF. The spectra of Type Ic SNe show O absorption features that are both stronger and broader (indicating faster expansion velocities) compared to Type IIb and Type Ib SNe. These findings along with very weak He absorption support the traditional picture with Type Ic SNe being heavily stripped of their He envelopes prior to the explosions, and argue against alternative explanations, such as differences in explosive mixing of 56Ni among the SE SN subtypes.
  •  
3.
  • Nyholm, Anders, 1985- (författare)
  • Supernova surroundings on circumstellar and galactic scales
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Some stars cease to be in a bright and destructive display called a supernova. This thesis explores what we can learn about supernovae (SNe) by studying their immediate surroundings, and what the SNe can teach us about their environments. The work presented is mostly based on the rich harvest of observations from 2009-2017 by the Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF). The PTF/iPTF was an untargeted sky survey at Palomar Observatory, aimed at finding and following up astronomical transients, such as SNe. During its existence, a massive star typically loses several solar masses of material. If much mass is lost in the decades or centuries before the SN, this material around the star (the circumstellar medium, CSM) will be quickly swept up by the ejecta of the eventual SN. This interaction can contribute strongly to the luminosity of the SN and make the light curve of an interacting SN carry signs of the progenitor star mass loss history. SNe with a hydrogen-rich CSM are called SNe Type IIn. A SN of this type, iPTF13z, found and followed by iPTF, had a slowly declining lightcurve with at least 5 major rebrightenings ("bumps") indicating rich structure in the CSM. Archival images clearly shows a precursor outburst about 210 days before the SN discovery, demonstrating the iPTF13z progenitor to be restless before its demise. Type IIn supernovae are heterogeneous, but only limited statistics has been done on samples. From PTF/iPTF, a sample of 42 SNe Type IIn was therefore selected, with photometry allowing their light curve rise times, decline rates and peak luminosities to be measured. It was shown that more luminous events are generally more long-lasting, but no strong correlation was found between rise times and peak luminosities. Two clusters of risetimes (around 20 and 50 days, respectively) were identified. The less long-lasting SNe Type IIn dominate the sample, suggesting that stars with a less extended dense CSM might be more common among SN Type IIn progenitors. Thermonuclear SNe (SNe Type Ia) are useful as standardisable candles, but no secure identification has yet been made of the progenitor system of a SN Type Ia. Using a late-time spectrum from the Nordic Optical Telescope of the nearby thermonuclear SN 2014J, a search for material ablated from a possible non-compact companion gave the upper limit of about 0.0085 solar masses of hydrogen-rich ablated gas. One likely explanation is that the SN 2014J progenitor system was a binary white dwarf. Supernovae are also useful tracers of the star formation history in their host galaxies, with SNe Type Ia tracing earlier epochs of star formation and exploding massive stars tracing more recent. For active galactic nuclei (AGN, the luminous centres of galaxies harbouring accreting supermassive black holes) SNe allows the so-called unification model to be tested. The unification model assumes that the main distinction between the two types of AGN is the viewing angle towards the central black hole, and that other properties (e.g. star formation history) of the host galaxies should be the same for the two AGN types. Matching 2190 SNe from PTF/iPTF to about 89000 AGN with spectra from the Sloan Digital Sky Survey, a significantly higher number of SNe in the hosts of AGN type 2 was found, challenging the unification model.
  •  
4.
  • Sagués Carracedo, Ana, 1993- (författare)
  • Chasing Cosmic Rarities : Kilonovae and Gravitationally Lensed Supernovae in Optical Surveys
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis focuses on two important topics in astrophysics: the detection of kilonovae (KNe) and gravitationally lensed supernovae (glSNe) in optical surveys. In the first part, the study quantifies the impact of survey depth and choice of filters on the detection probability of KNe. The results highlight the importance of accounting for asymmetries expected for KNe, and despite several search campaigns, no KNe were detected by the Zwicky Transient Facility (ZTF). Nonetheless, non-detection studies provided meaningful constraints on the luminosity function and on the rates of KNe. The findings contribute to advancing our understanding of these rare, fast, and faint transients. I also discuss the improvements in measuring the Hubble constant with follow-up data of KNe, including broadband photometry and spectrophotometric data from the upcoming IFU instrument MAAT. The second part of the thesis focuses on gravitationally lensed supernovae. The ZTF survey was expected to detect more than one strongly lensed supernova per year, but only one was identified in the first five years. The study presents simulations of lightcurves for lensed supernovae and new rates based on realistic survey simulations for ZTF. Optimal cuts to distinguish lensed supernovae from normal unlensed supernovae are also provided. The thesis discusses time delay and lightcurve modeling for the one event found during ZTF, SN Zwicky, and the lessons learned from it.The techniques developed in this thesis can be applied to future surveys to increase the detection rate of KNe and glSNe. These events and their underlying physics provide valuable insights in cosmology.
  •  
5.
  •  
6.
  • Taddia, Francesco, 1985- (författare)
  • Observations of rare supernovae and their environments
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Supernovae (SNe) are the final stage in the life of massive stars. Their explosion unbinds the progenitor star revealing its inner layers. The SN ejecta interact with the circumstellar material (CSM), providing further information on the progenitor star.In this work we present the study of rare SN subtypes, aiming to investigate their observational and physical properties and those of their progenitor stars.These studies include the analysis of SN samples as well as that of single objects.Two main SN classes are discussed: radioactively-powered events and SNe interacting with their CSM.Within the first group, we investigated the rare (~1% of core-collapse SNe) family of SN 1987A-like events. These SNe are found to be the explosion of compact, hydrogen-rich blue supergiant (BSG) stars, and to occur mainly in moderately low metallicity environs. We also studied a sample of 20 stripped-envelope (SE) SNe, which are also powered by the decay of radioactive 56Ni. These SNe are the result of the core-collapse of massive, hydrogen or even helium-poor stars stripped of their outer envelopes by line-driven winds and/or by the accretion onto companion stars.We investigated the differences among the early-time light curves of the subtypes forming the SE SN group (IIb, Ib, Ic, Ic-BL) and found that in all of them the 56Ni is strongly mixed out in the ejecta. This result suggests that the difference between helium-poor and helium-rich SNe is due to an actual lack of helium in SNe Ic and Ic-BL rather than to a different degree of 56Ni mixing.Our work on CSM-interacting SNe include the study of a sample of SNe IIn, i.e. core-collapse SNe interacting with hydrogen-rich CSM, and the analysis of SN 2008J, a particularly rare event which we interpreted as the interaction of a thermonuclear SN Ia with a thick hydrogen-rich CSM. Spectral analysis of the SN IIn sample suggests that these SNe are likely to be the explosion of luminous blue variable stars (LBVs), although other channels are not excluded.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy