SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sommaruga Ruben) "

Sökning: WFRF:(Sommaruga Ruben)

  • Resultat 1-10 av 11
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adrian, Rita, et al. (författare)
  • Lakes as sentinels of climate change
  • 2009
  • Ingår i: Limnology and Oceanography. - : Association for the Sciences of Limnology and Oceanography (ASLO). - 0024-3590 .- 1939-5590. ; 54:6(2), s. 2283-2297
  • Tidskriftsartikel (refereegranskat)abstract
    • While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment.
  •  
2.
  • Comont, David, et al. (författare)
  • UV responses of Lolium perenne raised along a latitudinal gradient across Europe : a filtration study
  • 2012
  • Ingår i: Physiologia Plantarum. - : Wiley-Blackwell. - 0031-9317 .- 1399-3054. ; 145, s. 604-618
  • Tidskriftsartikel (refereegranskat)abstract
    • Lolium perenne (cv. AberDart) was grown at 14 locations along a latitudinal gradient across Europe (37–68◦N) to study the impact of ultraviolet radiation (UV) and climate on aboveground growth and foliar UV-B absorbing compounds. At each location, plants were grown outdoors for 5 weeks in a replicated UV-B filtration experiment consisting of open, UV-B transparent (cellulose diacetate) and UV-B opaque (polyester) environments. Fourier transform-infrared spectroscopy was used to compare plantmetabolite profiles in relation to treatment and location. UV radiation and climatic parameters were determined for each location from online sources and the data were assessed using a combination of ANOVA and multiple regression analyses. Most of the variation in growth between the locations was attributable to the combination of climatic parameters, with minimum temperature identified as an important growth constraint. However, no single environmental parameter could consistently account for the variability in plant growth. Concentrations of foliar UV-B absorbing compounds showed a positive trend with solar UV across the latitudinal gradient; however, this relationship was not consistent in all treatments. The most striking experimental outcome from this study was the effect of presence or absence of filtration frames onUV-absorbing compounds. Overall, the study demonstrates the value of an European approach in studying the impacts of natural UV across a large latitudinal gradient. We have shown the feasibility of coordinated UV filtration at multiple sites but have also highlighted the need for open controls and careful interpretation of plant responses.
  •  
3.
  • Farkas, Julia, et al. (författare)
  • Impact of TiO2 nanoparticles on freshwater bacteria from three Swedish lakes
  • 2015
  • Ingår i: Science of the Total Environment. - 0048-9697 .- 1879-1026. ; 535, s. 85-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the rapidly rising production and usage of nano-enabled products, aquatic environments are increasingly exposed to engineered nanoparticles (ENPs), causing concerns about their potential negative effects. In this study we assessed the effects of uncoated titanium dioxide nanoparticles (TiO(2)NPs) on the growth and activity of bacterial communities of three Swedish lakes featuring different chemical characteristics such as dissolved organic carbon (DOC) concentration, pH and elemental composition. TiO2NP exposure concentrations were 15, 100, and 1000 mu g L-1, and experiments were performed in situ under three light regimes: darkness, photosynthetically active radiation (PAR), and ambient sunlight including UV radiation (UVR). The nanoparticles were most stable in lake water with high DOC and low chemical element concentrations. At the highest exposure concentration (1000 mu g L-1 TiO2NP) the bacterial abundance was significantly reduced in all lake waters. In the medium and high DOC lake waters, exposure concentrations of 100 mu g L-1 TiO2NP caused significant reductions in bacterial abundance. The cell-specific bacterial activity was significantly enhanced at high TiO2NP exposure concentrations, indicating the loss of nanoparticle-sensitive bacteria and a subsequent increased activity by tolerant ones. No UV-induced phototoxic effect of TiO2NP was found in this study. We conclude that in freshwater lakes with high DOC and low chemical element concentrations, uncoated TiO(2)NPs show an enhanced stability and can significantly reduce bacterial abundance at relatively low exposure concentrations.
  •  
4.
  • Hansson, Lars-Anders, et al. (författare)
  • Escape from UV threats in zooplankton: A cocktail of behavior and protective pigmentation
  • 2007
  • Ingår i: Ecology. - : Ecological Society of America. - 0012-9658 .- 1939-9170. ; 88:8, s. 1932-1939
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to avoid environmental threats, organisms may respond by altering behavior or phenotype. Using experiments performed in high-latitude Siberia and in temperate Sweden, we show for the first time that, among freshwater crustacean zooplankton, the defense against threats from ultraviolet radiation (UV) is a system where phenotypic plasticity and behavioral escape mechanisms function as complementary traits. Freshwater copepods relied mainly on accumulating protective pigments when exposed to UV radiation, but Daphnia showed strong behavioral responses. Pigment levels for both Daphnia and copepods were generally higher at higher latitudes, mirroring different UV threat levels. When released from the UV threat, Daphnia rapidly reduced (within 10 days) their UV protecting pigmentation-by as much as 40%-suggesting a cost in maintaining UV protective pigmentation. The. evolutionary advantage of protective pigments is, likely, the ability to utilize the whole water column during daytime; conversely, since the amount of algal food is generally higher in surface waters, unpigmented individuals are restricted to a less preferred feeding habitat in deeper waters. Our main conclusion is that different zooplankton taxa, and similar taxa at different latitudes, use different mixes of behavior and pigments to respond to UV radiation.
  •  
5.
  • Hylander, Samuel, et al. (författare)
  • Concentrations of sunscreens and antioxidant pigments in Arctic Calanus spp. in relation to ice cover, ultraviolet radiation, and the phytoplankton spring bloom
  • 2015
  • Ingår i: Limnology and Oceanography. - 0024-3590 .- 1939-5590. ; 60, s. 2197-2206
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic zooplankton ascend to shallow depths during spring to graze on the yearly occurring phytoplankton bloom. However, in surface waters they are exposed to detrimental ultraviolet radiation (UVR) levels. Here, we quantified concentrations of substances known to have UVR-protective functions, namely mycosporine-like amino acids (MAAs) and the carotenoid astaxanthin, from March to May in Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus. Ice cover was 100% in the beginning of March, started to break up during April and was gone by the end of May. UVR-exposure in the water column was tightly linked to the ice conditions and water UVR-transparency was up to 6 m (depth where 1% radiation remains). Concentrations of MAAs in C. finmarchicus and C. glacialis increased sharply during ice break-up and peaked concurrently with maximum chlorophyll a (Chl a) levels. MAA-concentrations in C. hyperboreus increased later in accordance with its later arrival to the surface. The concentration of astaxanthin increased in all three species over time but there was no synchrony with ice conditions or the phytoplankton bloom. Even though only the upper 6 m of the water column was affected by UV-radiation, MAAs in the copepods were tightly correlated to the UV-threat. Hence, changes in ice cover are projected to have a large impact on the UVR-exposure of zooplankton emphasizing the importance of the timing of zooplankton ascent from deep waters in relation to the phytoplankton bloom and the ice break-up.
  •  
6.
  • Jane, Stephen F., et al. (författare)
  • Widespread deoxygenation of temperate lakes
  • 2021
  • Ingår i: Nature. - : NATURE RESEARCH. - 0028-0836 .- 1476-4687. ; 594:7861, s. 66-70
  • Tidskriftsartikel (refereegranskat)abstract
    • The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity(1,2), nutrient biogeochemistry(3), greenhouse gas emissions(4), and the quality of drinking water(5). The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity(6,7), but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification(8,9) or oxygen may increase as a result of enhanced primary production(10). Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans(6,7) and could threaten essential lake ecosystem services(2,3,5,11).
  •  
7.
  • Kraemer, Benjamin M., et al. (författare)
  • Climate change drives widespread shifts in lake thermal habitat
  • 2021
  • Ingår i: Nature Climate Change. - 1758-678X .- 1758-6798. ; 11:6, s. 521-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978-1995) and recent (1996-2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity. Using measurements from 139 global lakes, the authors demonstrate how long-term thermal habitat change in lakes is exacerbated by species' seasonal and depth-related constraints. They further reveal higher change in tropical lakes, and those with high biodiversity and endemism.
  •  
8.
  • Peter, Hannes, et al. (författare)
  • An evaluation of methods to study the gut bacterial community composition of freshwater zooplankton.
  • 2008
  • Ingår i: Journal of Plankton Research. - 0142-7873 .- 1464-3774. ; 30:9, s. 997-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • The occurrence of gut bacteria in freshwater and marine zooplankton has long been recognized, but knowledge about the composition of the gut "microflora" and its permanent presence in different zooplankters is still inadequate. In this study, we tested the suitability of fluorescence in situ hybridization (FISH), catalysed reporter deposition (CARD)-FISH, cultivation and transmission electron microscopy (TEM) on homogenates and whole-specimen sections to assess the presence and identity of gut bacteria in several freshwater copepod and cladoceran species. Unambiguous results about the presence of a permanent gut "microflora" were obtained for freshly caught Daphnia pulex by TEM. CARD-FISH on gut homogenates from Acanthodiaptomus denticornis and D. pulex revealed a very similar bacterial composition to that present in the water column. Major bacterial groups found in cladocerans and copepods were alpha-, beta-, gamma-Proteobacteria and Cytophaga–Flavobacteria. The high contribution of alpha-Proteobacteria in A. denticornis suggested a specific niche for this group, but probably in association with its carapace. FISH on paraffin semithin sections had the potential to provide quantitative and qualitative information about the composition of the gut "microflora", but loss of bacteria and gut content was significant.
  •  
9.
  • Pilla, Rachel M., et al. (författare)
  • Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
  • 2020
  • Ingår i: Scientific Reports. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.
  •  
10.
  • Pilla, Rachel M., et al. (författare)
  • Global data set of long-term summertime vertical temperature profiles in 153 lakes
  • 2021
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy