SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Song M) ;mspu:(publicationother)"

Sökning: WFRF:(Song M) > Annan publikation

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wuestefeld, Anika, et al. (författare)
  • Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.
  •  
2.
  • Yu, Hao, et al. (författare)
  • Association of an estrogen-sensitive Pax1-Col11a1-Mmp3 signaling axis with adolescent idiopathic scoliosis.
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 9,161 individuals with AIS and 80,731 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629_c.4004C>T; p.(Pro1335Leu); P=7.07e -11 , OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice ( Pax1 -/- ). In postnatal spines we found that Pax1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1 -/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in growth plate cells (GPCs) suppresses expression of Pax1 and of Mmp3 , encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1 P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 , or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in GPCs. These studies support a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1 - Col11a1 - Mmp3 signaling axis in the growth plate.
  •  
3.
  • Baronio, Cesare M., et al. (författare)
  • The amide I spectrum of parallel β-sheet proteins
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The amide I absorption of the polypeptide backbone has long been used to analyze the secondary structure of proteins. This approach has gained additional attention in the context of amyloid diseases where a particular focus is on the distinction between parallel and antiparallel β-sheets because these structures often discriminate between pre-fibrillar structures and fibrils. Some earlier infrared spectra with typical features of antiparallel β-sheets were interpreted as arising from the parallel β-sheets of fibrils. Therefore, the ability of infrared spectroscopy to distinguish between both types of β-sheets is debated. While it is established that regular, antiparallel β-sheets give rise to a high wavenumber band near 1690 cm-1, it is less clear whether or not this band may also occur for parallel β-sheets. Here we present and analyze the amide I spectra of two β-helix proteins, SV2 and Pent. The overall shape of the proteins is that of a cuboid which has parallel β-sheets on its four sides, which are connected by bends. The main features of their amide I spectrum are a band at 1665, and two bands between 1645 and 1628 cm-1. Both proteins exhibit also a weak component band near 1690 cm-1. Calculations of the amide I spectrum indicate that the absorption at high wavenumbers is not caused by the parallel β-sheets but by the bends between the β-strands. We therefore suggest to modify the interpretation of the amide I spectrum as follows: a high wavenumber band near 1690 cm-1 may be caused by other structures than antiparallel β-sheets. However, when the spectrum consists of only two distinct bands, one near 1690 cm-1 and one near 1630 cm-1, then an assignment to antiparallel β-sheets is consistent with the literature.
  •  
4.
  • Drew, David A., et al. (författare)
  • Aspirin and NSAID use and the risk of COVID-19
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Early reports raised concern that use of non-steroidal anti-inflammatory drugs (NSAIDs) may increase risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19). Users of the COVID Symptom Study smartphone application reported use of aspirin and other NSAIDs between March 24 and May 8, 2020. Users were queried daily about symptoms, COVID-19 testing, and healthcare seeking behavior. Cox proportional hazards regression was used to determine the risk of COVID-19 among according to aspirin or non-aspirin NSAID users. Among 2,736,091 individuals in the U.S., U.K., and Sweden, we documented 8,966 incident reports of a positive COVID-19 test over 60,817,043 person-days of follow-up. Compared to non-users and after stratifying by age, sex, country, day of study entry, and race/ethnicity, non-aspirin NSAID use was associated with a modest risk for testing COVID-19 positive (HR 1.23 [1.09, 1.32]), but no significant association was observed among aspirin users (HR 1.13 [0.92, 1.38]). After adjustment for lifestyle factors, comorbidities and baseline symptoms, any NSAID use was not associated with risk (HR 1.02 [0.94, 1.10]). Results were similar for those seeking healthcare for COVID-19 and were not substantially different according to lifestyle and sociodemographic factors or after accounting for propensity to receive testing. Our results do not support an association of NSAID use, including aspirin, with COVID-19 infection. Previous reports of a potential association may be due to higher rates of comorbidities or use of NSAIDs to treat symptoms associated with COVID-19.One Sentence Summary NSAID use is not associated with COVID-19 risk.Competing Interest StatementJW, RD, and JC are employees of Zoe Global Ltd. TDS is a consultant to Zoe Global Ltd. DAD and ATC previously served as investigators on a clinical trial of diet and lifestyle using a separate mobile application that was supported by Zoe Global Ltd. Other authors have no conflict of interest to declare.Clinical TrialNCT04331509Funding StatementZoe provided in kind support for all aspects of building running and supporting the app and service to all users worldwide. DAD is supported by the National Institute of Diabetes and Digestive and Kidney Diseases K01DK120742. CGG is supported by the Bau Tsu Zung Bau Kwan Yeu Hing Research and Clinical Fellowship. LHN is supported by the American Gastroenterological Association Research Scholars Award. ATC is the Stuart and Suzanne Steele MGH Research Scholar and Stand Up to Cancer scientist. The Massachusetts Consortium on Pathogen Readiness (MassCPR) and Mark and Lisa Schwartz supported MGH investigators (DAD CGG LHN ADJ WM RSM CHL SK ATC). CMA is supported by the NIDDK K23 DK120899 and the Boston Childrens Hospital Office of Faculty Development Career Development Award. Kings College of London investigators (KAL MNL TV MSG CHS SO CJS TDS) were supported by the Wellcome Trust and EPSRC (WT212904/Z/18/Z WT203148/Z/16/Z T213038/Z/18/Z) the NIHR GSTT/KCL Biomedical Research Centre MRC/BHF (MR/M016560/1) UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare and the Alzheimers Society (AS-JF-17-011). MNL is supported by an NIHR Doctoral Fellowship (NIHR300159). Work related to the Swedish elements of the study are supported by grants from the Swedish Research Council, Swedish Heart-Lung Foundation and the Swedish Foundation for Strategic Research (LUDC-IRC 15-0067). Sponsors had no role in study design analysis and interpretation of data report writing and the decision to submit for publication.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Participants provided informed consent to the use of app data for research purposes and agreed to privacy policies and terms of use. This research study was approved by the Partners Human Research Committee IRB 2020P000909 Kings College London Ethics Committee REMAS ID 18210 Review Reference LRS-19/20-18210 and the central ethics committee in Sweden DNR 2020-01803All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData collected in the app is being shared with other health researchers through the NHS-funded Health Data Research U.K. (HDRUK)/SAIL consortium, housed in the U.K. Secure Research Platform (UKSeRP) in Swansea. Anonymized data is available to be shared with bonafide researchers HDRUK according to their protocols (https://healthdatagateway.org/detail/9b604483-9cdc-41b2-b82c-14ee3dd705f6). U.S. investigators are encouraged to coordinate data requests through the COPE Consortium (www.monganinstitute.org/cope-consortium). Data updates can be found on https://covid.joinzoe.com.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy