SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spaans M.) ;pers:(Krips M.)"

Sökning: WFRF:(Spaans M.) > Krips M.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yang, C., et al. (författare)
  • Submillimeter H 2 O and H 2 O + emission in lensed ultra- and hyper-luminous infrared galaxies at z ~ 2-4
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595, s. Art no A80-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z ∼ 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312 ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111 (Eup/k = 101 K) or 211-202 (Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O ∼ 6-21 × 108 L⊙ (3 > μ > 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O(LH2O) and infrared (LIR) that LH2O ∼ LIR1:1-1:2, with our new detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm ∼ 45-75 K, H2O column density per unit velocity interval NH2O/ΔV ≳ 0:3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation between LH2O and LH2O+ has been found in galaxies from low to high redshift. The velocity-integrated flux density ratio between H2O+ and H2O suggests that cosmic rays generated by strong star formation are possibly driving the H2O+ formation. © 2016 ESO.
  •  
2.
  • Burillo, S. G., et al. (författare)
  • Molecular line emission in NGC 1068 imaged with ALMA : I. An AGN-driven outflow in the dense molecular gas
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 567, s. 125-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate.Methods. We have used the Atacama Large Millimeter Array (ALMA) to map the emission of a set of dense molecular gas (n(H2) ' 1056 cm3) tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3), and CS(7-6)) and their underlying continuum emission in the central r ∼ 2 kpc of NGC 1068 with spatial resolutions ∼0:3000:500 (∼20-35 pc for the assumed distance of D = 14 Mpc). Results. The sensitivity and spatial resolution of ALMA give an unprecedented detailed view of the distribution and kinematics of the dense molecular gas (n(H2) ≈ 1056cm3) in NGC 1068. Molecular line and dust continuum emissions are detected from a r ∼ 200 pc off-centered circumnuclear disk (CND), from the 2.6 kpc-diameter bar region, and from the r ∼ 1:3 kpc starburst (SB) ring. Most of the emission in HCO+, HCN, and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the active galactic nucleus (AGN), betraying ongoing feedback. We used the dust continuum fluxes measured by ALMA together with NIR/MIR data to constrain the properties of the putative torus using CLUMPY models and found a torus radius of 20+6 10 pc. The Fourier decomposition of the gas velocity field indicates that rotation is perturbed by an inward radial flow in the SB ring and the bar region. However, the gas kinematics from r ∼ 50 pc out to r ∼ 400 pc reveal a massive (Mmol ∼ 2:7+0:9 1:2 × 107 M) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet, and the occurrence of outward motions in the disk suggests that the outflow is AGN driven. Conclusions. The molecular outflow is likely launched when the ionization cone of the narrow line region sweeps the nuclear disk. The outflow rate estimated in the CND, dM=dt ∼ 63+21 37 M yr1, is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion timescale of ≤1 Myr. The CND gas reservoir is likely replenished on longer timescales by efficient gas inflow from the outer disk. © ESO 2014.
  •  
3.
  • Viti, S., et al. (författare)
  • Molecular line emission in NGC 1068 imaged with ALMA II. The chemistry of the dense molecular gas
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570, s. 28-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We present a detailed analysis of Atacama Large Millimeter/submillimeter Array (ALMA) Bands 7 and 9 data of CO, HCO+, HCN, and CS, augmented with Plateau de Bure Interferometer (PdBI) data of the ~200 pc circumnuclear disc (CND) and the ~1.3 kpc starburst ring (SB ring) of NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy. We aim to determine the physical characteristics of the dense gas present in the CND, and to establish whether the different line intensity ratios we find within the CND, as well as between the CND and the SB ring, are due to excitation effects (gas density and temperature differences) or to a different chemistry.Methods. We estimate the column densities of each species in local thermodynamic equilibrium (LTE). We then compute large one-dimensional, non-LTE radiative transfer grids (using RADEX) by using only the CO transitions first, and then all the available molecules to constrain the densities, temperatures, and column densities within the CND. We finally present a preliminary set of chemical models to determine the origin of the gas.Results. We find that, in general, the gas in the CND is very dense (>105 cm-3) and hot (T> 150 K), with differences especially in the temperature across the CND. The AGN position has the lowest CO/HCO+, CO/HCN, and CO/CS column density ratios. The RADEX analyses seem to indicate that there is chemical differentiation across the CND. We also find differences between the chemistry of the SB ring and some regions of the CND; the SB ring is also much colder and less dense than the CND. Chemical modelling does not succeed in reproducing all the molecular ratios with one model per region, suggesting the presence of multi-gas phase components.Conclusions. The LTE, RADEX, and chemical analyses all indicate that more than one gas-phase component is necessary to uniquely fit all the available molecular ratios within the CND. A higher number of molecular transitions at the ALMA resolution is necessary to determine quantitatively the physical and chemical characteristics of these components.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy