SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spanagel Rainer) ;hsvcat:3"

Sökning: WFRF:(Spanagel Rainer) > Medicin och hälsovetenskap

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bazov, Igor, 1973-, et al. (författare)
  • Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics.
  • 2018
  • Ingår i: Molecular Neurobiology. - : Springer. - 0893-7648 .- 1559-1182. ; 55:8, s. 7049-7061
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.
  •  
2.
  • Bilbao, Ainhoa, et al. (författare)
  • A Pharmacogenetic Determinant of Mu-Opioid Receptor Antagonist Effects on Alcohol Reward and Consumption : Evidence from Humanized Mice.
  • 2015
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 77:10, s. 850-858
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: It has been proposed that therapeutic responses to naltrexone in alcoholism are moderated by variation at the mu-opioid receptor gene locus (OPRM1). This remains controversial because human results vary and no prospectively genotyped studies have been reported. We generated humanized mice carrying the respective human OPRM1 A118G alleles. Here, we used this model system to examine the role of OPRM1 A118G variation for opioid antagonist effects on alcohol responses.METHODS: Effects of naltrexone on alcohol reward were examined using intracranial self-stimulation. Effects of naltrexone or nalmefene on alcohol intake were examined in continuous access home cage two-bottle free-choice drinking and operant alcohol self-administration paradigms.RESULTS: Alcohol lowered brain stimulation reward thresholds in 118GG mice in a manner characteristic of rewarding drugs, and this effect was blocked by naltrexone. Brain stimulation reward thresholds were unchanged by alcohol or naltrexone in 118AA mice. In the home cage, increased alcohol intake emerged in 118GG mice with increasing alcohol concentrations and was 33% higher at 17% alcohol. At this concentration, naltrexone selectively suppressed alcohol intake in 118GG animals to a level virtually identical to that of 118AA mice. No effect of naltrexone was found in the latter group. Similarly, both naltrexone and nalmefene were more effective in suppressing operant alcohol self-administration in 118GG mice.CONCLUSIONS: In a model that allows close experimental control, OPRM1 A118G variation robustly moderates effects of opioid antagonism on alcohol reward and consumption. These findings strongly support a personalized medicine approach to alcoholism treatment that takes into account OPRM1 genotype.
  •  
3.
  • Domi, Esi, et al. (författare)
  • Genetic Deletion of Neuronal PPAR gamma Enhances the Emotional Response to Acute Stress and Exacerbates Anxiety: An Effect Reversed by Rescue of Amygdala PPAR gamma Function
  • 2016
  • Ingår i: JOURNAL OF NEUROSCIENCE. - : SOC NEUROSCIENCE. - 0270-6474. ; 36:50, s. 12611-12623
  • Tidskriftsartikel (refereegranskat)abstract
    • PPAR gamma is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPAR gamma is activated by thiazolidinediones such as pioglitazone and is targeted to treat insulin resistance. PPAR gamma is densely expressed in brain areas involved in regulation of motivational and emotional processes. Here, we investigated the role of PPAR gamma in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPAR gamma by pioglitazone did not affect basal anxiety, but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPAR gamma (PPAR gamma(NestinCre)), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPAR gamma antagonist, elicited a marked anxiogenic response in PPAR gamma wild-type (WT), but not in PPAR gamma(NestinCre) knock-out (KO) mice. Using c-Fos immunohistochemistry, we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala (AMY) and the hippocampus (HIPP) of PPAR gamma(NestinCre) KO mice compared with WT mice. No differences were found between WT and KO mice in hypothalamic regions responsible for hormonal response to stress or in blood corticosterone levels. Microinjection of pioglitazone into the AMY, but not into the HIPP, abolished the anxiogenic response elicited by acute stress. Results also showed that, in both regions, PPAR gamma colocalizes with GABAergic cells. These findings demonstrate that neuronal PPAR gamma is involved the regulation of the stress response and that the AMY is a key substrate for the anxiolytic effect of PPAR gamma
  •  
4.
  • Hansson, Anita C., et al. (författare)
  • Oxytocin Reduces Alcohol Cue-Reactivity in Alcohol-Dependent Rats and Humans
  • 2018
  • Ingår i: Neuropsychopharmacology. - : NATURE PUBLISHING GROUP. - 0893-133X .- 1740-634X. ; 43:6, s. 1235-1246
  • Tidskriftsartikel (refereegranskat)abstract
    • Approved pharmacological treatments for alcohol use disorder are limited in their effectiveness, and new drugs that can easily be translated into the clinic are warranted. One of those candidates is oxytocin because of its interaction with several alcohol-induced effects. Alcoholdependent rats as well as post-mortem brains of human alcoholics and controls were analyzed for the expression of the oxytocin system by qRT-PCR, in situ hybridizaton, receptor autoradiography ([(125)l]OVTA binding), and immunohistochemistry. Alcohol self administration and cue-induced reinstatement behavior was measured after intracerebroventicular injection of 10 nM oxytocin in dependent rats. Here we show a pronounced upregulation of oxytocin receptors in brain tissues of alcohol dependent rats and deceased alcoholics, primarily in frontal and striatal areas. This upregulation stems most likely from reduced oxytocin expression in hypothalamic nuclei. Pharmacological validaton showed that oxytocin reduced cue-induced reinstatement response in dependent rats-an effect that was not observed in nondependent rats. Finally, a clinical pilot study (German clinical trial number DRKS00009253) using functional magnetic resonance imaging in heavy social male drinkers showed that intranasal oxytocin (24 IU) decreased neural cue-reactivity in brain networks similar to those detected in dependent rats and humans with increased oxytocin receptor expression. These studies suggest that oxytocin might be used as an anticraving medication and thus may positvely affect treatment outcomes in alcoholics.
  •  
5.
  • Nordenankar, Karin, 1981- (författare)
  • Functional Analysis of the Vesicular Glutamate Transporter 2 in Specific Neuronal Circuits of the Brain
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A key issue in neuroscience is to determine the connection between neuronal circuits and behaviour. In the adult brain, all neuronal circuits include a glutamatergic component. Three proteins designated Vesicular glutamate transporter 1-3 (VGLUT1-3) possess the capability of packaging glutamate into presynaptic vesicles for release of glutamate at the nerve terminal. The present study aimed at determining the role of VGLUT2 in neuronal circuits of higher brain function, emotion, and reward-pocessing. A conditional knockout (cKO) strategy was utilised, and three different mouse lines were produced to delete VGLUT2 in specific neuronal circuits in a temporally and spatially controlled manner. First, we produced a cKO mouse in which Vglut2 was deleted in specific subpopulations of the cortex, amygdala and hippocampus from preadolescence. This resulted in blunted aspects in cognitive, emotional and social behaviour in a schizophrenia-related phenotype. Furthermore, we showed a downstream effect of the targeted deletion on the dopaminergic system. In a subsequent analysis of the same cKO mice, we showed that female cKO mice were more affected their male counterparts, and we also found that female schizophrenia patients, but not male patients, had increased Vglut2 levels in the cortex.  Second, we produced and analysed cKO mice in which Vglut2 was deleted in the cortex, amygdala and hippocampus already from midgestation, and could show that this deletion affected emotional, but not cognitive, function. Third, we addressed the role of VGLUT2 in midbrain dopamine neurons by targeting Vglut2 specifically in these neurons. These cKO mice showed a blunted activational response to the psychostimulant amphetamine and increased operant self-administration of both sugar and cocaine reinforcers. Further, the cKO mice displayed strongly enhanced cocaine-seeking in response to cocaine-associated cues, a behaviour of relevance for addiction in humans. In summary, this thesis work has addressed the role of the presynaptic glutamatergic neuron in different neuronal circuits and shown that the temporal and spatial distribution of VGLUT2 is of great significance for normal brain function.
  •  
6.
  • Ruggeri, Barbara, et al. (författare)
  • Association of Protein Phosphatase PPM1G With Alcohol Use Disorder and Brain Activity During Behavioral Control in a Genome-Wide Methylation Analysis
  • 2015
  • Ingår i: American Journal of Psychiatry. - : American Psychiatric Association Publishing. - 0002-953X .- 1535-7228. ; 172:6, s. 543-552
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The genetic component of alcohol use disorder is substantial, but monozygotic twin discordance indicates a role for nonheritable differences that could be mediated by epigenetics. Despite growing evidence associating epigenetics and psychiatric disorders, it is unclear how epigenetics, particularly DNA methylation, relate to brain function and behavior, including drinking behavior. Method: The authors carried out a genome-wide analysis of DNA methylation of 18 monozygotic twin pairs discordant for alcohol use disorder and validated differentially methylated regions. After validation, the authors characterized these differentially methylated regions using personality trait assessment and functional MRI in a sample of 499 adolescents. Results: Hypermethylation in the 3'-protein-phosphatase-1G (PPM1G) gene locus was associated with alcohol use disorder. The authors found association of PPM1G hypermethylation with early escalation of alcohol use and increased impulsiveness. They also observed association of PPM1G hypermethylation with increased blood-oxygen-level-dependent response in the right subthalamic nucleus during an impulsiveness task. Conclusions: Overall, the authors provide first evidence for an epigenetic marker associated with alcohol consumption and its underlying neurobehavioral phenotype.
  •  
7.
  • Sangchooli, Arshiya, et al. (författare)
  • Parameter Space and Potential for Biomarker Development in 25 Years of fMRI Drug Cue Reactivity
  • 2024
  • Ingår i: JAMA psychiatry. - : AMER MEDICAL ASSOC. - 2168-6238 .- 2168-622X.
  • Forskningsöversikt (refereegranskat)abstract
    • Importance In the last 25 years, functional magnetic resonance imaging drug cue reactivity (FDCR) studies have characterized some core aspects in the neurobiology of drug addiction. However, no FDCR-derived biomarkers have been approved for treatment development or clinical adoption. Traversing this translational gap requires a systematic assessment of the FDCR literature evidence, its heterogeneity, and an evaluation of possible clinical uses of FDCR-derived biomarkers. Objective To summarize the state of the field of FDCR, assess their potential for biomarker development, and outline a clear process for biomarker qualification to guide future research and validation efforts. Evidence Review The PubMed and Medline databases were searched for every original FDCR investigation published from database inception until December 2022. Collected data covered study design, participant characteristics, FDCR task design, and whether each study provided evidence that might potentially help develop susceptibility, diagnostic, response, prognostic, predictive, or severity biomarkers for 1 or more addictive disorders. Findings There were 415 FDCR studies published between 1998 and 2022. Most focused on nicotine (122 [29.6%]), alcohol (120 [29.2%]), or cocaine (46 [11.1%]), and most used visual cues (354 [85.3%]). Together, these studies recruited 19 311 participants, including 13 812 individuals with past or current substance use disorders. Most studies could potentially support biomarker development, including diagnostic (143 [32.7%]), treatment response (141 [32.3%]), severity (84 [19.2%]), prognostic (30 [6.9%]), predictive (25 [5.7%]), monitoring (12 [2.7%]), and susceptibility (2 [0.5%]) biomarkers. A total of 155 interventional studies used FDCR, mostly to investigate pharmacological (67 [43.2%]) or cognitive/behavioral (51 [32.9%]) interventions; 141 studies used FDCR as a response measure, of which 125 (88.7%) reported significant interventional FDCR alterations; and 25 studies used FDCR as an intervention outcome predictor, with 24 (96%) finding significant associations between FDCR markers and treatment outcomes. Conclusions and Relevance Based on this systematic review and the proposed biomarker development framework, there is a pathway for the development and regulatory qualification of FDCR-based biomarkers of addiction and recovery. Further validation could support the use of FDCR-derived measures, potentially accelerating treatment development and improving diagnostic, prognostic, and predictive clinical judgments.
  •  
8.
  • Zillich, Lea, et al. (författare)
  • Biological aging markers in blood and brain tissue indicate age acceleration in alcohol use disorder
  • 2024
  • Ingår i: ALCOHOL-CLINICAL AND EXPERIMENTAL RESEARCH. - : John Wiley & Sons. - 2993-7175. ; 48:2, s. 250-259
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAlcohol use disorder (AUD) is associated with increased mortality and morbidity risk. A reason for this could be accelerated biological aging, which is strongly influenced by disease processes such as inflammation. As recent studies of AUD show changes in DNA methylation and gene expression in neuroinflammation-related pathways in the brain, biological aging represents a potentially important construct for understanding the adverse effects of substance use disorders. Epigenetic clocks have shown accelerated aging in blood samples from individuals with AUD. However, no systematic evaluation of biological age measures in AUD across different tissues and brain regions has been undertaken.MethodsAs markers of biological aging (BioAge markers), we assessed Levine's and Horvath's epigenetic clocks, DNA methylation telomere length (DNAmTL), telomere length (TL), and mitochondrial DNA copy number (mtDNAcn) in postmortem brain samples from Brodmann Area 9 (BA9), caudate nucleus, and ventral striatum (N = 63-94), and in whole blood samples (N = 179) of individuals with and without AUD. To evaluate the association between AUD status and BioAge markers, we performed linear regression analyses while adjusting for covariates.ResultsThe majority of BioAge markers were significantly associated with chronological age in all samples. Levine's epigenetic clock and DNAmTL were indicative of accelerated biological aging in AUD in BA9 and whole blood samples, while Horvath's showed the opposite effect in BA9. No significant association of AUD with TL and mtDNAcn was detected. Measured TL and DNAmTL showed only small correlations in blood and none in brain.ConclusionsThe present study is the first to simultaneously investigate epigenetic clocks, telomere length, and mtDNAcn in postmortem brain and whole blood samples in individuals with AUD. We found evidence for accelerated biological aging in AUD in blood and brain, as measured by Levine's epigenetic clock, and DNAmTL. Additional studies of different tissues from the same individuals are needed to draw valid conclusions about the congruence of biological aging in blood and brain.
  •  
9.
  • Zillich, Lea, et al. (författare)
  • Multi-omics signatures of alcohol use disorder in the dorsal and ventral striatum
  • 2022
  • Ingår i: Translational Psychiatry. - : Springer Nature. - 2158-3188. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol Use Disorder (AUD) is a major contributor to global mortality and morbidity. Postmortem human brain tissue enables the investigation of molecular mechanisms of AUD in the neurocircuitry of addiction. We aimed to identify differentially expressed (DE) genes in the ventral and dorsal striatum between individuals with AUD and controls, and to integrate the results with findings from genome- and epigenome-wide association studies (GWAS/EWAS) to identify functionally relevant molecular mechanisms of AUD. DNA-methylation and gene expression (RNA-seq) data was generated from postmortem brain samples of 48 individuals with AUD and 51 controls from the ventral striatum (VS) and the dorsal striatal regions caudate nucleus (CN) and putamen (PUT). We identified DE genes using DESeq2, performed gene-set enrichment analysis (GSEA), and tested enrichment of DE genes in results of GWASs using MAGMA. Weighted correlation network analysis (WGCNA) was performed for DNA-methylation and gene expression data and gene overlap was tested. Differential gene expression was observed in the dorsal (FDR < 0.05), but not the ventral striatum of AUD cases. In the VS, DE genes at FDR < 0.25 were overrepresented in a recent GWAS of problematic alcohol use. The ARHGEF15 gene was upregulated in all three brain regions. GSEA in CN and VS pointed towards cell-structure associated GO-terms and in PUT towards immune pathways. The WGCNA modules most strongly associated with AUD showed strong enrichment for immune response and inflammation pathways. Our integrated analysis of multi-omics data sets provides further evidence for the importance of immune- and inflammation-related processes in AUD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (7)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Spanagel, Rainer (8)
Hansson, Anita C (5)
Bakalkin, Georgy (4)
Sommer, Wolfgang H. (4)
Rietschel, Marcella (3)
Heilig, Markus, 1959 ... (2)
visa fler...
Witt, Stephanie H (2)
Heinz, Andreas (2)
Garavan, Hugh (2)
Domi, Esi (2)
Streit, Fabian (2)
Sarkisyan, Daniil (1)
Hoffmann, Sabine (1)
Heilig, Markus (1)
Yakovleva, Tatiana (1)
Potenza, Marc N. (1)
Kaprio, Jaakko (1)
Degenhardt, Franzisk ... (1)
Adorjan, Kristina (1)
Hoffmann, Per (1)
Watanabe, Hiroyuki (1)
Nothen, Markus M. (1)
Banaschewski, Tobias (1)
Thorsell, Annika (1)
Kononenko, Olga (1)
Barbier, Estelle (1)
Bazov, Igor, 1973- (1)
Mill, Jonathan (1)
Witkiewitz, Katie (1)
Bilbao, Ainhoa (1)
Robinson, J Elliott (1)
Malanga, C J (1)
Desrivieres, Sylvane (1)
Schumann, Gunter (1)
Ubaldi, Massimo (1)
Lourdusamy, Anbarasu (1)
Frouin, Vincent (1)
Paus, Tomas (1)
Pausova, Zdenka (1)
Juliano, Anthony C. (1)
Hanlon, Colleen A. (1)
Barker, Gareth J (1)
Beck, Anne (1)
Ittermann, Bernd (1)
Ruggeri, Barbara (1)
Yan, Jia (1)
Mackey, Scott (1)
London, Edythe D. (1)
Paulus, Martin P. (1)
Sinha, Rajita (1)
visa färre...
Lärosäte
Uppsala universitet (5)
Linköpings universitet (4)
Örebro universitet (1)
Karolinska Institutet (1)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy