SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spector Tim D) "

Sökning: WFRF:(Spector Tim D)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Justice, A. E., et al. (författare)
  • Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
  • 2017
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.
  •  
2.
  •  
3.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
4.
  • Shungin, Dmitry, et al. (författare)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
5.
  • Ahluwalia, T. S., et al. (författare)
  • Genome-wide association study of circulating interleukin 6 levels identifies novel loci
  • 2021
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 30:5, s. 393-409
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of circulating serum IL-6 levels comprising up to 67428 (n(discovery)=52654 and n(replication)=14774) individuals of European ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (P-combined=1.8x10(-11)), HLA-DRB1/DRB5 rs660895 on Chr6p21 (P-combined=1.5x10(-10)) in the combined meta-analyses of all samples. We also replicated the IL6R rs4537545 locus on Chr1q21 (P-combined=1.2x10(-122)). Our study identifies novel loci for circulating IL-6 levels uncovering new immunological and inflammatory pathways that may influence IL-6 pathobiology.
  •  
6.
  • Winkler, Thomas W, et al. (författare)
  • The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study.
  • 2015
  • Ingår i: PLoS Genetics. - : Public Library of Science. - 1553-7404 .- 1553-7390. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.
  •  
7.
  • Ehret, Georg B., et al. (författare)
  • Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk
  • 2011
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 478:7367, s. 103-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood pressure is a heritable trait(1) influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (>= 140 mm Hg systolic blood pressure or >= 90 mm Hg diastolic blood pressure)(2). Even small increments in blood pressure are associated with an increased risk of cardiovascular events(3). This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
  •  
8.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
9.
  • Joshi, Peter K, et al. (författare)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
10.
  • Ehret, Georg B., et al. (författare)
  • The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals
  • 2016
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 48:10, s. 1171-1184
  • Tidskriftsartikel (refereegranskat)abstract
    • To dissect the genetic architecture of blood pressure and assess effects on target organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry, and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure-associated loci, of which 17 were new; 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target organ damage in multiple tissues but with minor effects in the kidney. Our findings expand current knowledge of blood pressure-related pathways and highlight tissues beyond the classical renal system in blood pressure regulation.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (101)
Typ av innehåll
refereegranskat (100)
övrigt vetenskapligt (1)
Författare/redaktör
Spector, Tim D. (101)
Uitterlinden, Andre ... (60)
Mangino, Massimo (59)
Wareham, Nicholas J (53)
Van Duijn, Cornelia ... (51)
McCarthy, Mark I (51)
visa fler...
Hofman, Albert (47)
Gieger, Christian (46)
Wilson, James F. (46)
Salomaa, Veikko (43)
Boomsma, Dorret I. (41)
Spector, TD (41)
Chasman, Daniel I. (39)
Metspalu, Andres (38)
Martin, Nicholas G. (37)
Deloukas, Panos (37)
Ridker, Paul M. (37)
Mangino, M (37)
Strachan, David P (36)
Uitterlinden, AG (35)
Rudan, Igor (35)
Campbell, Harry (35)
Hayward, Caroline (35)
Perola, Markus (34)
Vollenweider, Peter (34)
Mohlke, Karen L (34)
Jarvelin, Marjo-Riit ... (34)
Franks, Paul W (33)
Hottenga, Jouke-Jan (33)
Montgomery, Grant W. (33)
Kutalik, Zoltan (33)
Willemsen, Gonneke (33)
Langenberg, Claudia (33)
Boomsma, DI (32)
Salomaa, V (32)
Lind, Lars (32)
Boehnke, Michael (32)
Scott, Robert A (32)
Jarvelin, MR (32)
Gieger, C (32)
Wright, Alan F. (32)
Willemsen, G (31)
van Duijn, CM (31)
Teumer, Alexander (31)
Gudnason, Vilmundur (31)
Hofman, A (31)
Nolte, Ilja M. (31)
Ingelsson, Erik (31)
Ingelsson, E (31)
Samani, Nilesh J. (31)
visa färre...
Lärosäte
Uppsala universitet (56)
Lunds universitet (38)
Göteborgs universitet (28)
Umeå universitet (19)
Karolinska Institutet (18)
Stockholms universitet (5)
visa fler...
Kungliga Tekniska Högskolan (1)
Luleå tekniska universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (101)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (76)
Naturvetenskap (15)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy