SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spenger Christian) ;pers:(Westman Eric)"

Sökning: WFRF:(Spenger Christian) > Westman Eric

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khan, Wasim, et al. (författare)
  • A Multi-Cohort Study of ApoE epsilon 4 and Amyloid-beta Effects on the Hippocampus in Alzheimer's Disease
  • 2017
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 56:3, s. 1159-1174
  • Tidskriftsartikel (refereegranskat)abstract
    • The apolipoprotein E (APOE) gene has been consistently shown to modulate the risk of Alzheimer's disease (AD). Here, using an AD and normal aging dataset primarily consisting of three AD multi-center studies (n = 1,781), we compared the effect of APOE and amyloid-beta (A beta) on baseline hippocampal volumes in AD patients, mild cognitive impairment (MCI) subjects, and healthy controls. A large sample of healthy adolescents (n = 1,387) was also used to compare hippocampal volumes between APOE groups. Subjects had undergone a magnetic resonance imaging (MRI) scan and APOE genotyping. Hippocampal volumes were processed using FreeSurfer. In the AD and normal aging dataset, hippocampal comparisons were performed in each APOE group and in epsilon 4 carriers with positron emission tomography (PET) A beta who were dichotomized (A beta+/A beta-) using previous cut-offs. We found a linear reduction in hippocampal volumes with epsilon 4 carriers possessing the smallest volumes, epsilon 3 carriers possessing intermediate volumes, and epsilon 2 carriers possessing the largest volumes. Moreover, AD and MCI epsilon 4 carriers possessed the smallest hippocampal volumes and control epsilon 2 carriers possessed the largest hippocampal volumes. Subjects with both APOE epsilon 4 and A beta positivity had the lowest hippocampal volumes when compared to A beta-epsilon 4 carriers, suggesting a synergistic relationship between APOE epsilon 4 and A beta. However, we found no hippocampal volume differences between APOE groups in healthy 14-year-old adolescents. Our findings suggest that the strongest neuroanatomic effect of APOE epsilon 4 on the hippocampus is observed in AD and groups most at risk of developing the disease, whereas hippocampi of old and young healthy individuals remain unaffected.
  •  
2.
  • Oberg, Johanna, et al. (författare)
  • Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice
  • 2008
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 29:9, s. 1423-1433
  • Tidskriftsartikel (refereegranskat)abstract
    • Translational biomarkers in Alzheimer's disease based on non-invasive in vivo methods are highly warranted. (1)H magnetic resonance spectroscopy (MRS) is non-invasive and applicable in vivo in both humans and experimental animals. In vivo(1)H MRS and 3D MRI were performed on brains of double transgenic (tg) mice expressing a double mutant human beta-amyloid precursor protein APP(K670N,M671L) and human mutated presenilin gene PS1M146L, and wild-type (wt) littermates at 2.5, 6.5 and 9 months of age using a 9.4T magnet. For quantification, LCModel was used, and the data were analyzed using multivariate data analysis (MVDA). MVDA evidenced a significant separation, which became more pronounced with age, between tg and wt mice at all time points. While myo-inositol and guanidoacetate were important for group separation in young mice, N-acetylaspartate, glutamate and macrolipids were important for separation of aged tg and wt mice. Volume segmentation revealed that brain and hippocampus were readily smaller in tg as compared to wt mice at the age of 2.5 months. Amyloid plaques were seen in 6.5 and 9 months, but not in 2.5 months old animals. In conclusion, differences in brain metabolites could be accurately depicted in tg and wt mice in vivo by combining MRS with MVDA. First differences in metabolite content were readily seen at 2.5 months, when volume defects in tg mice were present, but no amyloid plaques.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy