SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stenderup Jesper) ;pers:(Willerslev Eske)"

Sökning: WFRF:(Stenderup Jesper) > Willerslev Eske

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allentoft, Morten E., et al. (författare)
  • 100 ancient genomes show repeated population turnovers in Neolithic Denmark
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625, s. 329-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1–4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5–7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.
  •  
2.
  • Allentoft, Morten E., et al. (författare)
  • Population genomics of post-glacial western Eurasia
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7994, s. 301-311
  • Tidskriftsartikel (refereegranskat)abstract
    • Western Eurasia witnessed several large-scale human migrations during the Holocene1–5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes—mainly from the Mesolithic and Neolithic periods—from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a ‘great divide’ genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 bp, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 bp, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a ‘Neolithic steppe’ cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
  •  
3.
  • Orlando, Ludovic, et al. (författare)
  • Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 499:7456, s. 74-
  • Tidskriftsartikel (refereegranskat)abstract
    • The rich fossil record of equids has made them a model for evolutionary processes(1). Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP)(2,3). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. prze-walskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus(4,5). We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population(6). We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.
  •  
4.
  • Fischer, Anders, 1951, et al. (författare)
  • Vittrup Man-The life-history of a genetic foreigner in Neolithic Denmark.
  • 2024
  • Ingår i: PloS one. - 1932-6203. ; 19:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The lethally maltreated body of Vittrup Man was deposited in a Danish bog, probably as part of a ritualised sacrifice. It happened between c. 3300 and 3100 cal years BC, i.e., during the period of the local farming-based Funnel Beaker Culture. In terms of skull morphological features, he differs from the majority of the contemporaneous farmers found in Denmark, and associates with hunter-gatherers, who inhabited Scandinavia during the previous millennia. His skeletal remains were selected for transdisciplinary analysis to reveal his life-history in terms of a population historical perspective. We report the combined results of an integrated set of genetic, isotopic, physical anthropological and archaeological analytical approaches. Strontium signature suggests a foreign birthplace that could be in Norway or Sweden. In addition, enamel oxygen isotope values indicate that as a child he lived in a colder climate, i.e., to the north of the regions inhabited by farmers. Genomic data in fact demonstrates that he is closely related to Mesolithic humans known from Norway and Sweden. Moreover, dietary stable isotope analyses on enamel and bone collagen demonstrate a fisher-hunter way of life in his childhood and a diet typical of farmers later on. Such a variable life-history is also reflected by proteomic analysis of hardened organic deposits on his teeth, indicating the consumption of forager food (seal, whale and marine fish) as well as farmer food (sheep/goat). From a dietary isotopic transect of one of his teeth it is shown that his transfer between societies of foragers and farmers took place near to the end of his teenage years.
  •  
5.
  • Lorenzen, Eline D., et al. (författare)
  • Species-specific responses of Late Quaternary megafauna to climate and humans
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 479:7373, s. 359-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
  •  
6.
  • Margaryan, Ashot, et al. (författare)
  • Population genomics of the Viking world
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 585:7825, s. 390-396
  • Tidskriftsartikel (refereegranskat)abstract
    • The maritime expansion of Scandinavian populations during the Viking Age (about ad 750–1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci—including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response—in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent.
  •  
7.
  • Rasmussen, Morten, et al. (författare)
  • The genome of a Late Pleistocene human from a Clovis burial site in western Montana
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 506:7487, s. 225-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 C-14 years before present (BP) (13,000 to 12,600 calendar years BP)(1,2). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology(3). However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans(2). An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum(4). Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 +/- 35 C-14 years BP (approximately 12,707-12,556 calendar years BP) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4x and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population(5) into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years BP. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.
  •  
8.
  • Schubert, Mikkel, et al. (författare)
  • Prehistoric genomes reveal the genetic foundation and cost of horse domestication
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:52, s. E5661-E5669
  • Tidskriftsartikel (refereegranskat)abstract
    • The domestication of the horse similar to 5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski's horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the "cost of domestication" hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy