SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stones K) "

Sökning: WFRF:(Stones K)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  •  
5.
  • Fabian, ID, et al. (författare)
  • Travel burden and clinical presentation of retinoblastoma: analysis of 1024 patients from 43 African countries and 518 patients from 40 European countries
  • 2021
  • Ingår i: The British journal of ophthalmology. - : BMJ. - 1468-2079 .- 0007-1161. ; 105:10, s. 1435-1443
  • Tidskriftsartikel (refereegranskat)abstract
    • The travel distance from home to a treatment centre, which may impact the stage at diagnosis, has not been investigated for retinoblastoma, the most common childhood eye cancer. We aimed to investigate the travel burden and its impact on clinical presentation in a large sample of patients with retinoblastoma from Africa and Europe.MethodsA cross-sectional analysis including 518 treatment-naïve patients with retinoblastoma residing in 40 European countries and 1024 treatment-naïve patients with retinoblastoma residing in 43 African countries.ResultsCapture rate was 42.2% of expected patients from Africa and 108.8% from Europe. African patients were older (95% CI −12.4 to −5.4, p<0.001), had fewer cases of familial retinoblastoma (95% CI 2.0 to 5.3, p<0.001) and presented with more advanced disease (95% CI 6.0 to 9.8, p<0.001); 43.4% and 15.4% of Africans had extraocular retinoblastoma and distant metastasis at the time of diagnosis, respectively, compared to 2.9% and 1.0% of the Europeans. To reach a retinoblastoma centre, European patients travelled 421.8 km compared to Africans who travelled 185.7 km (p<0.001). On regression analysis, lower-national income level, African residence and older age (p<0.001), but not travel distance (p=0.19), were risk factors for advanced disease.ConclusionsFewer than half the expected number of patients with retinoblastoma presented to African referral centres in 2017, suggesting poor awareness or other barriers to access. Despite the relatively shorter distance travelled by African patients, they presented with later-stage disease. Health education about retinoblastoma is needed for carers and health workers in Africa in order to increase capture rate and promote early referral.
  •  
6.
  • Courvoisier, D, et al. (författare)
  • POINTS TO CONSIDER WHEN ANALYSING AND REPORTING COMPARATIVE EFFECTIVENESS RESEARCH WITH OBSERVATIONAL DATA IN RHEUMATOLOGY
  • 2020
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 79, s. 124-125
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Comparing drug effectiveness in observational settings is hampered by several major threats, among them confounding and attrition bias bias (patients who stop treatment no longer contribute information, which may overestimate true drug effectiveness).Objectives:To present points to consider (PtC) when analysing and reporting comparative effectiveness with observational data in rheumatology (EULAR-funded taskforce).Methods:The task force comprises 18 experts: epidemiologists, statisticians, rheumatologists, patients, and health professionals.Results:A systematic literature review of methods currently used for comparative effectiveness research in rheumatology and a statistical simulation study were used to inform the PtC (table). Overarching principles focused on defining treatment effectiveness and promoting robust and transparent epidemiological and statistical methods increase the trustworthiness of the results.Points to considerReporting of comparative effectiveness observational studies must follow the STROBE guidelinesAuthors should prepare a statistical analysis plan in advanceTo provide a more complete picture of effectiveness, several outcomes across multiple health domains should be comparedLost to follow-up from the study sample must be reported by the exposure of interestThe proportion of patients who stop and/or change therapy over time, as well as the reasons for treatment discontinuation must be reportedCovariates should be chosen based on subject matter knowledge and model selection should be justifiedThe study baseline should be at treatment initiation and a description of how covariate measurements relate to baseline should be includedThe analysis should be based on all patients starting a treatment and not limited to patients remaining on treatment at a certain time pointWhen treatment discontinuation occurs before the time of outcome assessment, this attrition should be taken into account in the analysis.Sensitivity analyses should be undertaken to explore the influence of assumptions related to missingness, particularly in case of attritionConclusion:The increased use of real-world comparative effectiveness studies makes it imperative to reduce divergent or contradictory results due to biases. Having clear recommendations for the analysis and reporting of these studies should promote agreement of observational studies, and improve studies’ trustworthiness, which may also facilitate meta-analysis of observational data.Disclosure of Interests:Delphine Courvoisier: None declared, Kim Lauper: None declared, Sytske Anne Bergstra: None declared, Maarten de Wit Grant/research support from: Dr. de Wit reports personal fees from Ely Lilly, 2019, personal fees from Celgene, 2019, personal fees from Pfizer, 2019, personal fees from Janssen-Cilag, 2017, outside the submitted work., Consultant of: Dr. de Wit reports personal fees from Ely Lilly, 2019, personal fees from Celgene, 2019, personal fees from Pfizer, 2019, personal fees from Janssen-Cilag, 2017, outside the submitted work., Speakers bureau: Dr. de Wit reports personal fees from Ely Lilly, 2019, personal fees from Celgene, 2019, personal fees from Pfizer, 2019, personal fees from Janssen-Cilag, 2017, outside the submitted work., Bruno Fautrel Grant/research support from: AbbVie, Lilly, MSD, Pfizer, Consultant of: AbbVie, Biogen, BMS, Boehringer Ingelheim, Celgene, Lilly, Janssen, Medac MSD France, Nordic Pharma, Novartis, Pfizer, Roche, Sanofi Aventis, SOBI and UCB, Thomas Frisell: None declared, Kimme Hyrich Grant/research support from: Pfizer, UCB, BMS, Speakers bureau: Abbvie, Florenzo Iannone Consultant of: Speaker and consulting fees from AbbVie, Eli Lilly, Novartis, Pfizer, Roche, Sanofi, UCB, MSD, Speakers bureau: Speaker and consulting fees from AbbVie, Eli Lilly, Novartis, Pfizer, Roche, Sanofi, UCB, MSD, Joanna KEDRA: None declared, Pedro M Machado Consultant of: PMM: Abbvie, Celgene, Janssen, Lilly, MSD, Novartis, Pfizer, Roche and UCB, Speakers bureau: PMM: Abbvie, BMS, Lilly, MSD, Novartis, Pfizer, Roche and UCB, Lykke Midtbøll Ørnbjerg Grant/research support from: Novartis, Ziga Rotar Consultant of: Speaker and consulting fees from Abbvie, Amgen, Biogen, Eli Lilly, Medis, MSD, Novartis, Pfizer, Roche, Sanofi., Speakers bureau: Speaker and consulting fees from Abbvie, Amgen, Biogen, Eli Lilly, Medis, MSD, Novartis, Pfizer, Roche, Sanofi., Maria Jose Santos Speakers bureau: Novartis and Pfizer, Tanja Stamm Grant/research support from: AbbVie, Roche, Consultant of: AbbVie, Sanofi Genzyme, Speakers bureau: AbbVie, Roche, Sanofi, Simon Stones Consultant of: I have been a paid consultant for Envision Pharma Group and Parexel. This does not relate to this abstract., Speakers bureau: I have been a paid speaker for Actelion and Janssen. These do not relate to this abstract., Anja Strangfeld Speakers bureau: AbbVie, BMS, Pfizer, Roche, Sanofi-Aventis, Robert B.M. Landewé Consultant of: AbbVie; AstraZeneca; Bristol-Myers Squibb; Eli Lilly & Co.; Galapagos NV; Novartis; Pfizer; UCB Pharma, Axel Finckh Grant/research support from: Pfizer: Unrestricted research grant, Eli-Lilly: Unrestricted research grant, Consultant of: Sanofi, AB2BIO, Abbvie, Pfizer, MSD, Speakers bureau: Sanofi, Pfizer, Roche, Thermo Fisher Scientific
  •  
7.
  • Lauper, K, et al. (författare)
  • A SYSTEMATIC REVIEW TO INFORM THE EULAR POINTS TO CONSIDER WHEN ANALYSING AND REPORTING COMPARATIVE EFFECTIVENESS RESEARCH WITH OBSERVATIONAL DATA IN RHEUMATOLOGY
  • 2020
  • Ingår i: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 79, s. 123-124
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Comparative effectiveness studies using observational data are increasingly used. Despite their high potential for bias, there are no detailed recommendations on how these studies should best be analysed and reported in rheumatology.Objectives:To conduct a systematic literature review of comparative effectiveness research in rheumatology to inform the EULAR task force developing points to consider when analysing and reporting comparative effectiveness research with observational data.Methods:All original articles comparing drug effectiveness in longitudinal observational studies of ≥100 patients published in key rheumatology journals (Scientific Citation Index > 2) between 1.01.2008 and 25.03.2019 available in Ovid MEDLINE® were included. Titles and abstracts were screened by two reviewers for the first 1000 abstracts and independently checked to ensure sufficient agreement has been reached. The main information extracted included the types of outcomes used to assess effectiveness, and the types of analyses performed, focusing particularly on confounding and attrition.Results:9969 abstracts were screened, with 218 articles proceeding to full-text extraction (Figure 1), representing a number of rheumatic and musculoskeletal diseases. Agreement between the two reviewers for the first 1000 abstracts was 92.7% with a kappa of 0.6. The majority of the studies used several outcomes to evaluate effectiveness (Figure 2A). Most of the studies did not explain how they addressed missing data on the covariates (70%) (Figure 2B). When addressed (30%), 44% used complete case analysis and 10% last observation carried forward (LOCF). 25% of studies did not adjust for confounding factors and there was no clear correlation between the number of factors used to adjust and the number of participants in the studies. An important number of studies selected covariates using bivariate screening and/or stepwise selection. 86% of the studies did not acknowledge attrition (Figure 2C). When trying to correct for attrition (14%), 38% used non-responder (NR) imputation, 24% used LUNDEX1, a form of NR imputation, and 21% LOCF.Conclusion:Most of studies used multiple outcomes. However, the vast majority did not acknowledge missing data and attrition, and a quarter did not adjust for any confounding factors. Moreover, when attempting to account for attrition, several studies used methods which potentially increase bias (LOCF, complete case analysis, bivariate screening…). This systematic review confirms the need for the development of recommendations for the assessment and reporting of comparative drug effectiveness in observational data in rheumatology.References:[1]Kristensen et al. A&R. 2006 Feb;54(2):600-6.Acknowledgments:Support of the Standing Committee on Epidemiology and Health Services ResearchDisclosure of Interests:Kim Lauper: None declared, Joanna KEDRA: None declared, Maarten de Wit Grant/research support from: Dr. de Wit reports personal fees from Ely Lilly, 2019, personal fees from Celgene, 2019, personal fees from Pfizer, 2019, personal fees from Janssen-Cilag, 2017, outside the submitted work., Consultant of: Dr. de Wit reports personal fees from Ely Lilly, 2019, personal fees from Celgene, 2019, personal fees from Pfizer, 2019, personal fees from Janssen-Cilag, 2017, outside the submitted work., Speakers bureau: Dr. de Wit reports personal fees from Ely Lilly, 2019, personal fees from Celgene, 2019, personal fees from Pfizer, 2019, personal fees from Janssen-Cilag, 2017, outside the submitted work., Bruno Fautrel Grant/research support from: AbbVie, Lilly, MSD, Pfizer, Consultant of: AbbVie, Biogen, BMS, Boehringer Ingelheim, Celgene, Lilly, Janssen, Medac MSD France, Nordic Pharma, Novartis, Pfizer, Roche, Sanofi Aventis, SOBI and UCB, Thomas Frisell: None declared, Kimme Hyrich Grant/research support from: Pfizer, UCB, BMS, Speakers bureau: Abbvie, Florenzo Iannone Consultant of: Speaker and consulting fees from AbbVie, Eli Lilly, Novartis, Pfizer, Roche, Sanofi, UCB, MSD, Speakers bureau: Speaker and consulting fees from AbbVie, Eli Lilly, Novartis, Pfizer, Roche, Sanofi, UCB, MSD, Pedro M Machado Consultant of: PMM: Abbvie, Celgene, Janssen, Lilly, MSD, Novartis, Pfizer, Roche and UCB, Speakers bureau: PMM: Abbvie, BMS, Lilly, MSD, Novartis, Pfizer, Roche and UCB, Lykke Midtbøll Ørnbjerg Grant/research support from: Novartis, Ziga Rotar Consultant of: Speaker and consulting fees from Abbvie, Amgen, Biogen, Eli Lilly, Medis, MSD, Novartis, Pfizer, Roche, Sanofi., Speakers bureau: Speaker and consulting fees from Abbvie, Amgen, Biogen, Eli Lilly, Medis, MSD, Novartis, Pfizer, Roche, Sanofi., Maria Jose Santos Speakers bureau: Novartis and Pfizer, Tanja Stamm Grant/research support from: AbbVie, Roche, Consultant of: AbbVie, Sanofi Genzyme, Speakers bureau: AbbVie, Roche, Sanofi, Simon Stones Consultant of: I have been a paid consultant for Envision Pharma Group and Parexel. This does not relate to this abstract., Speakers bureau: I have been a paid speaker for Actelion and Janssen. These do not relate to this abstract., Anja Strangfeld Speakers bureau: AbbVie, BMS, Pfizer, Roche, Sanofi-Aventis, Robert B.M. Landewé Consultant of: AbbVie; AstraZeneca; Bristol-Myers Squibb; Eli Lilly & Co.; Galapagos NV; Novartis; Pfizer; UCB Pharma, Axel Finckh Grant/research support from: Pfizer: Unrestricted research grant, Eli-Lilly: Unrestricted research grant, Consultant of: Sanofi, AB2BIO, Abbvie, Pfizer, MSD, Speakers bureau: Sanofi, Pfizer, Roche, Thermo Fisher Scientific, Sytske Anne Bergstra: None declared, Delphine Courvoisier: None declared
  •  
8.
  • Courvoisier, DS, et al. (författare)
  • EULAR points to consider when analysing and reporting comparative effectiveness research using observational data in rheumatology
  • 2022
  • Ingår i: Annals of the rheumatic diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 81:6, s. 780-785
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparing treatment effectiveness over time in observational settings is hampered by several major threats, among them confounding and attrition bias.ObjectivesTo develop European Alliance of Associations for Rheumatology (EULAR) points to consider (PtC) when analysing and reporting comparative effectiveness research using observational data in rheumatology.MethodsThe PtC were developed using a three-step process according to the EULAR Standard Operating Procedures. Based on a systematic review of methods currently used in comparative effectiveness studies, the PtC were formulated through two in-person meetings of a multidisciplinary task force and a two-round online Delphi, using expert opinion and a simulation study. Finally, feedback from a larger audience was used to refine the PtC. Mean levels of agreement among the task force were calculated.ResultsThree overarching principles and 10 PtC were formulated, addressing, in particular, potential biases relating to attrition or confounding by indication. Building on Strengthening the Reporting of Observational Studies in Epidemiology guidelines, these PtC insist on the definition of the baseline for analysis and treatment effectiveness. They also focus on the reasons for stopping treatment as an important consideration when assessing effectiveness. Finally, the PtC recommend providing key information on missingness patterns.ConclusionTo improve the reliability of an increasing number of real-world comparative effectiveness studies in rheumatology, special attention is required to reduce potential biases. Adherence to clear recommendations for the analysis and reporting of observational comparative effectiveness studies will improve the trustworthiness of their results.
  •  
9.
  • Davies, N., et al. (författare)
  • Report of the 14th Genomic Standards Consortium Meeting, Oxford, UK, September 17-21, 2012
  • 2014
  • Ingår i: Standards in Genomic Sciences. - : Springer Science and Business Media LLC. - 1944-3277. ; 9:3, s. 1236-1250
  • Tidskriftsartikel (refereegranskat)abstract
    • This report summarizes the proceedings of the 14th workshop of the Genomic Standards Consortium (GSC) held at the University of Oxford in September 2012. The primary goal of the workshop was to work towards the launch of the Genomic Observatories (GOs) Network under the GSC. For the first time, it brought together potential GOs sites, GSC members, and a range of interested partner organizations. It thus represented the first meeting of the GOs Network (GOs1). Key outcomes include the formation of a core group of “champions” ready to take the GOs Network forward, as well as the formation of working groups. The workshop also served as the first meeting of a wide range of participants in the Ocean Sampling Day (OSD) initiative, a first GOs action. Three projects with complementary interests – COST Action ES1103, MG4U and Micro B3 – organized joint sessions at the workshop. A two-day GSC Hackathon followed the main three days of meetings.
  •  
10.
  • Davies, Neil, et al. (författare)
  • The founding charter of the Genomic Observatories Network
  • 2014
  • Ingår i: GigaScience. - 2047-217X. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy