SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Straile Dietmar) ;lar1:(umu)"

Sökning: WFRF:(Straile Dietmar) > Umeå universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gronchi, Enzo, et al. (författare)
  • Impact of climate warming on phenological asynchrony of plankton dynamics across Europe
  • 2023
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 26:5, s. 717-728
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming alters the seasonal timing of biological events. This raises concerns that species-specific responses to warming may de-synchronize co-evolved consumer-resource phenologies, resulting in trophic mismatch and altered ecosystem dynamics. We explored the effects of warming on the synchrony of two events: the onset of the phytoplankton spring bloom and the spring/summer maximum of the grazer Daphnia. Simulation of 16 lake types over 31 years at 1907 North African and European locations under 5 climate scenarios revealed that the current median phenological delay between the two events varies greatly (20–190 days) across lake types and geographic locations. Warming moves both events forward in time and can lengthen or shorten the delay between them by up to ±60 days. Our simulations suggest large geographic and lake-specific variations in phenological synchrony, provide quantitative predictions of its dependence on physical lake properties and geographic location and highlight research needs concerning its ecological consequences.
  •  
2.
  • Gronchi, Enzo, et al. (författare)
  • Local and continental-scale controls of the onset of spring phytoplankton blooms: Conclusions from a proxy-based model
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:9, s. 1976-1990
  • Tidskriftsartikel (refereegranskat)abstract
    • A key phenological event in the annual cycle of many pelagic ecosystems is the onset of the spring algal bloom (OAB). Descriptions of the factors controlling the OAB in temperate to polar lakes have been limited to isolated studies of single systems and conceptual models. Here we present a validated modelling approach that, for the first time, enables a quantitative prediction of the OAB and a systematic assessment of the processes controlling its timing on a continental scale. We used a weather-driven, one-dimensional lake model to simulate the seasonal dynamics of the underwater light climate in 16 lake types characterized by the factorial combination of four lake depths with four levels of water transparency. We did so at 1962 locations across Western Europe and over 31 years (1979–2009). Assuming that phytoplankton production is light-limited in winter, we identified four patterns of OAB control across lake types and climate zones. OAB timing is controlled by (i) the timing of ice-off in ice-covered clear or shallow lakes, (ii) the onset of thermal stratification in sufficiently deep and turbid lakes and (iii) the seasonal increase in incident radiation in all other lakes, except for (iv) ice-free, shallow and clear lakes in the south, where phytoplankton is not light-limited. The model predicts that OAB timing should respond to two pervasive environmental changes, global warming and browning, in opposite ways. OAB timing should be highly sensitive to warming in lakes where it is controlled by either ice-off or the onset of stratification, but resilient to warming in lakes where it is controlled by incident radiation. Conversely, OAB timing should be most sensitive to browning where it is controlled by incident radiation, but resilient to browning where it is controlled by ice-off or the onset of stratification. Available lake data are consistent with our findings.
  •  
3.
  • Knoll, Lesley B., et al. (författare)
  • Consequences of lake and river ice loss on cultural ecosystem services
  • 2019
  • Ingår i: Limnology and Oceanography Letters. - : Wiley Periodicals Inc.. - 2378-2242. ; 4:5, s. 119-131
  • Tidskriftsartikel (refereegranskat)abstract
    • People extensively use lakes and rivers covered by seasonal ice. Although ice cover duration has been declining over the past 150 years for Northern Hemisphere freshwaters, we know relatively little about how ice loss directly affects humans. Here, we synthesize the cultural ecosystem services (i.e., services that provide intangible or nonmaterial benefits) and associated benefits supported by inland ice. We also provide, for the first time, empirical examples that give quantitative evidence for a winter warming effect on a wide range of ice-related cultural ecosystem services and benefits. We show that in recent decades, warmer air temperatures delayed the opening date of winter ice roads and led to cancellations of spiritual ceremonies, outdoor ice skating races, and ice fishing tournaments. Additionally, our synthesis effort suggests unexploited data sets that allow for the use of integrative approaches to evaluate the interplay between inland ice loss and society.
  •  
4.
  • Sharma, Sapna, et al. (författare)
  • Increased winter drownings in ice-covered regions with warmer winters
  • 2020
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 15:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Winter activities on ice are culturally important for many countries, yet they constitute a high safety risk depending upon the stability of the ice. Because consistently cold periods are required to form stable and thick ice, warmer winters could degrade ice conditions and increase the likelihood of falling through the ice. This study provides the first large-scale assessment of winter drowning from 10 Northern Hemisphere countries. We documented over 4000 winter drowning events. Winter drownings increased exponentially in regions with warmer winters when air temperatures neared 0 degrees C. The largest number of drownings occurred when winter air temperatures were between -5 degrees C and 0 degrees C, when ice is less stable, and also in regions where indigenous traditions and livelihood require extended time on ice. Rates of drowning were greatest late in the winter season when ice stability declines. Children and adults up to the age of 39 were at the highest risk of winter drownings. Beyond temperature, differences in cultures, regulations, and human behaviours can be important additional risk factors. Our findings indicate the potential for increased human mortality with warmer winter air temperatures. Incorporating drowning prevention plans would improve adaptation strategies to a changing climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy