SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sublet J. C.) "

Sökning: WFRF:(Sublet J. C.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Verra, L., et al. (författare)
  • Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma
  • 2022
  • Ingår i: Physical Review Accelerators and Beams. - : American Physical Society. - 2469-9888. ; 25:7
  • Tidskriftsartikel (refereegranskat)abstract
    • A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the self -modulation (SM) instability. We show that SM of a proton bunch can be seeded by the wakefields driven by a preceding electron bunch. SM timing reproducibility and control are at the level of a small fraction of the modulation period. With this seeding method, we independently control the amplitude of the seed wakefields with the charge of the electron bunch and the growth rate of SM with the charge of the proton bunch. Seeding leads to larger growth of the wakefields than in the instability case.
  •  
2.
  • Nechaeva, T., et al. (författare)
  • Hosing of a Long Relativistic Particle Bunch in Plasma
  • 2024
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 132:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, selfmodulation in the perpendicular plane, at frequencies close to the plasma electron frequency, and are reproducible. Development of hosing depends on misalignment direction, its growth on misalignment extent and on proton bunch charge. Results have the main characteristics of a theoretical model, are relevant to other plasma -based accelerators and represent the first characterization of hosing.
  •  
3.
  • Verra, L., et al. (författare)
  • Development of the self-modulation instability of a relativistic proton bunch in plasma
  • 2023
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 30:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-modulation is a beam-plasma instability that is useful to drive large-amplitude wakefields with bunches much longer than the plasma skin depth. We present experimental results showing that, when increasing the ratio between the initial transverse size of the bunch and the plasma skin depth, the instability occurs later along the bunch, or not at all, over a fixed plasma length because the amplitude of the initial wakefields decreases. We show cases for which self-modulation does not develop, and we introduce a simple model discussing the conditions for which it would not occur after any plasma length. Changing bunch size and plasma electron density also changes the growth rate of the instability. We discuss the impact of these results on the design of a particle accelerator based on the self-modulation instability seeded by a relativistic ionization front, such as the future upgrade of the Advanced WAKefield Experiment.
  •  
4.
  • Plompen, A. J. M., et al. (författare)
  • The joint evaluated fission and fusion nuclear data library, JEFF-3.3
  • 2020
  • Ingår i: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 56:7
  • Forskningsöversikt (refereegranskat)abstract
    • The joint evaluated fission and fusion nuclear data library 3.3 is described. New evaluations for neutron-induced interactions with the major actinides 235U, 238U and 239Pu, on 241Am and 23Na, 59Ni, Cr, Cu, Zr, Cd, Hf, W, Au, Pb and Bi are presented. It includes new fission yields, prompt fission neutron spectra and average number of neutrons per fission. In addition, new data for radioactive decay, thermal neutron scattering, gamma-ray emission, neutron activation, delayed neutrons and displacement damage are presented. JEFF-3.3 was complemented by files from the TENDL project. The libraries for photon, proton, deuteron, triton, helion and alpha-particle induced reactions are from TENDL-2017. The demands for uncertainty quantification in modeling led to many new covariance data for the evaluations. A comparison between results from model calculations using the JEFF-3.3 library and those from benchmark experiments for criticality, delayed neutron yields, shielding and decay heat, reveals that JEFF-3.3 performes very well for a wide range of nuclear technology applications, in particular nuclear energy.
  •  
5.
  • Ledoux, X., et al. (författare)
  • The Neutrons for Science Facility at SPIRAL-2
  • 2018
  • Ingår i: Radiation Protection Dosimetry. - : OXFORD UNIV PRESS. - 0144-8420 .- 1742-3406. ; 180:1-4, s. 115-119
  • Tidskriftsartikel (refereegranskat)abstract
    • The neutrons for science (NFS) facility is a component of SPIRAL-2, the new superconducting linear accelerator built at GANIL in Caen (France). The proton and deuteron beams delivered by the accelerator will allow producing intense neutron fields in the 100 keV-40 MeV energy range. Continuous and quasi-mono-kinetic energy spectra, respectively, will be available at NFS, produced by the interaction of a deuteron beam on a thick Be converter and by the Li-7(p, n) reaction on thin converter. The pulsed neutron beam, with a flux up to two orders of magnitude higher than those of other existing time-of-flight facilities, will open new opportunities of experiments in fundamental research as well as in nuclear data measurements. In addition to the neutron beam, irradiation stations for neutron-, proton- and deuteron-induced reactions will be available for cross-sections measurements and for the irradiation of electronic devices or biological cells. NFS, whose first experiment is foreseen in 2018, will be a very powerful tool for physics, fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.
  •  
6.
  • Ledoux, X., et al. (författare)
  • The neutrons for science facility at SPIRAL-2
  • 2017
  • Ingår i: ND 2016. - Les Ulis : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Numerous domains, in fundamental research as well as in applications, require the study of reactions induced by neutrons with energies from few MeV up to few tens of MeV. Reliable measurements also are necessary to improve the evaluated databases used by nuclear transport codes. This energy range covers a large number of topics like transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. A new facility called Neutrons For Science (NFS) is being built for this purpose on the GANIL site at Caen (France). NFS is composed of a pulsed neutron beam for time-of-flight facility as well as irradiation stations for cross-section measurements. Neutrons will be produced by the interaction of deuteron and proton beams, delivered by the SPIRAL-2 linear accelerator, with thick or thin converters made of beryllium or lithium. Continuous and quasi-mono-energetic spectra will be available at NFS up to 40 MeV. In this fast energy region, the neutron flux is expected to be up to 2 orders of magnitude higher than at other existing time-of-flight facilities. In addition, irradiation stations for neutron-, proton- and deuteron-induced reactions will allow performing cross-section measurements by the activation technique. After a description of the facility and its characteristics, the experiments to be performed in the short and medium term will be presented.
  •  
7.
  • Ledoux, X., et al. (författare)
  • The Neutrons for Science Facility at SPIRAL-2
  • 2014
  • Ingår i: Nuclear Data Sheets. - : Elsevier BV. - 0090-3752 .- 1095-9904. ; 119, s. 353-356
  • Tidskriftsartikel (refereegranskat)abstract
    • The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in U-238 for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.
  •  
8.
  •  
9.
  • Sublet, J. -Ch., et al. (författare)
  • Neutron-induced damage simulations : Beyond defect production cross-section, displacement per atom and iron-based metrics
  • 2019
  • Ingår i: The European Physical Journal Plus. - : Springer Berlin/Heidelberg. - 2190-5444. ; 134:7
  • Forskningsöversikt (refereegranskat)abstract
    • Nuclear interactions can be the source of atomic displacement and post-short-term cascade annealing defects in irradiated structural materials. Such quantities are derived from, or can be correlated to, nuclear kinematic simulations of primary atomic energy distributions spectra and the quantification of the numbers of secondary defects produced per primary as a function of the available recoils, residual and emitted, energies. Recoils kinematics of neutral, residual, charged and multi-particle emissions are now more rigorously treated based on modern, complete and enhanced nuclear data parsed in state of the art processing tools. Defect production metrics are the starting point in this complex problem of correlating and simulating the behaviour of materials under irradiation, as direct measurements are extremely improbable. The multi-scale dimensions (nuclear-atomic-molecular-material) of the simulation process is tackled from the Fermi gradation to provide the atomic- and meso-scale dimensions with better metrics relying upon a deeper understanding and modelling capabilities of the nuclear level. Detailed, segregated primary knock-on-atom metrics are now available as the starting point of further simulation processes of isolated and clustered defects in material lattices. This allows more materials, incident energy ranges and particles, and irradiations conditions to be explored, with sufficient data to adequately cover both standard applications and novel ones, such as advanced-fission, accelerators, nuclear medicine, space and fusion. This paper reviews the theory, describes the latest methodologies and metrics, and provides recommendations for standard and novel approaches.
  •  
10.
  • Rochman, D., et al. (författare)
  • Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core
  • 2017
  • Ingår i: Nuclear Data Sheets. - : Elsevier BV. - 0090-3752 .- 1095-9904. ; 139, s. 1-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The impact of the current nuclear data library covariances such as in ENDF/B-VII.1, JEFF-3.2, JENDL-4.0, SCALE and TENDL, for relevant current reactors is presented in this work. The uncertainties due to nuclear data are calculated for existing PWR and BWR fuel assemblies (with burn-up up to 40 GWd/tHM, followed by 10 years of cooling time) and for a simplified PWR full core model (without burn-up) for quantities such as k ∞ , macroscopic cross sections, pin power or isotope inventory. In this work, the method of propagation of uncertainties is based on random sampling of nuclear data, either from covariance files or directly from basic parameters. Additionally, possible biases on calculated quantities are investigated such as the self-shielding treatment. Different calculation schemes are used, based on CASMO, SCALE, DRAGON, MCNP or FISPACT-II, thus simulating real-life assignments for technical-support organizations. The outcome of such a study is a comparison of uncertainties with two consequences. One: although this study is not expected to lead to similar results between the involved calculation schemes, it provides an insight on what can happen when calculating uncertainties and allows to give some perspectives on the range of validity on these uncertainties. Two: it allows to dress a picture of the state of the knowledge as of today, using existing nuclear data library covariances and current methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy