SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sun Jie 1977) ;pers:(Fu Yifeng 1984)"

Search: WFRF:(Sun Jie 1977) > Fu Yifeng 1984

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fazi, Andrea, 1992, et al. (author)
  • Multiple growth of graphene from a pre-dissolved carbon source
  • 2020
  • In: Nanotechnology. - : IOP Publishing. - 1361-6528 .- 0957-4484. ; 31:34, s. 345601-
  • Journal article (peer-reviewed)abstract
    • Mono- to few-layer graphene materials are successfully synthesized multiple times using Cu-Ni alloy as a catalyst after a single-chemical vapor deposition (CVD) process. The multiple synthesis is realized by extracting carbon source pre-dissolved in the catalyst substrate. Firstly, graphene is grown by the CVD method on Cu-Ni catalyst substrates. Secondly, the same Cu-Nicatalyst foils are annealed, in absence of any external carbon precursor, to grow graphene using the carbon atoms pre-dissolved in the catalyst during the CVD process. This annealing process is repeated to synthesize graphene successfully until carbon is exhausted in the Cu-Ni foils. After the CVD growth and each annealing growth process, the as-grown graphene is removed using a bubbling transfer method. A wide range of characterizations are performed to examine the quality of the obtained graphene material and to monitor the carbon concentration in the catalyst substrates. Results show that graphene from each annealing growth process possesses a similar quality, which confirmed the good reproducibility of the method. This technique brings great freedom to graphene growth and applications, and it could be also used for other 2D material synthesis.
  •  
2.
  • Fu, Yifeng, 1984, et al. (author)
  • Templated Growth of Covalently Bonded Three-Dimensional Carbon Nanotube Networks Originated from Graphene
  • 2012
  • In: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 24:12, s. 1576-1581
  • Journal article (peer-reviewed)abstract
    • A template-assisted method that enables the growth of covalently bonded three-dimensional carbon nanotubes (CNTs) originating from graphene at a large scale is demonstrated. Atomic force microscopy-based mechanical tests show that the covalently bonded CNT structure can effectively distribute external loading throughout the network to improve the mechanical strength of the material.
  •  
3.
  • Sun, Jie, 1977, et al. (author)
  • Synthesis Methods of Two-Dimensional MoS2: A Brief Review
  • 2017
  • In: Crystals. - : MDPI AG. - 2073-4352. ; 7:7, s. Article no 198 -
  • Research review (peer-reviewed)abstract
    • Molybdenum disulfide (MoS2) is one of the most important two-dimensional materials after graphene. Monolayer MoS2 has a direct bandgap (1.9 eV) and is potentially suitable for post-silicon electronics. Among all atomically thin semiconductors, MoS2's synthesis techniques are more developed. Here, we review the recent developments in the synthesis of hexagonal MoS2, where they are categorized into top-down and bottom-up approaches. Micromechanical exfoliation is convenient for beginners and basic research. Liquid phase exfoliation and solutions for chemical processes are cheap and suitable for large-scale production; yielding materials mostly in powders with different shapes, sizes and layer numbers. MoS2 films on a substrate targeting high-end nanoelectronic applications can be produced by chemical vapor deposition, compatible with the semiconductor industry. Usually, metal catalysts are unnecessary. Unlike graphene, the transfer of atomic layers is omitted. We especially emphasize the recent advances in metalorganic chemical vapor deposition and atomic layer deposition, where gaseous precursors are used. These processes grow MoS2 with the smallest building-blocks, naturally promising higher quality and controllability. Most likely, this will be an important direction in the field. Nevertheless, today none of those methods reproducibly produces MoS2 with competitive quality. There is a long way to go for MoS2 in real-life electronic device applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view