SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sun Jie 1977) ;pers:(Liu Johan 1960)"

Search: WFRF:(Sun Jie 1977) > Liu Johan 1960

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fazi, Andrea, 1992, et al. (author)
  • Multiple growth of graphene from a pre-dissolved carbon source
  • 2020
  • In: Nanotechnology. - : IOP Publishing. - 1361-6528 .- 0957-4484. ; 31:34, s. 345601-
  • Journal article (peer-reviewed)abstract
    • Mono- to few-layer graphene materials are successfully synthesized multiple times using Cu-Ni alloy as a catalyst after a single-chemical vapor deposition (CVD) process. The multiple synthesis is realized by extracting carbon source pre-dissolved in the catalyst substrate. Firstly, graphene is grown by the CVD method on Cu-Ni catalyst substrates. Secondly, the same Cu-Nicatalyst foils are annealed, in absence of any external carbon precursor, to grow graphene using the carbon atoms pre-dissolved in the catalyst during the CVD process. This annealing process is repeated to synthesize graphene successfully until carbon is exhausted in the Cu-Ni foils. After the CVD growth and each annealing growth process, the as-grown graphene is removed using a bubbling transfer method. A wide range of characterizations are performed to examine the quality of the obtained graphene material and to monitor the carbon concentration in the catalyst substrates. Results show that graphene from each annealing growth process possesses a similar quality, which confirmed the good reproducibility of the method. This technique brings great freedom to graphene growth and applications, and it could be also used for other 2D material synthesis.
  •  
2.
  • Fu, Yifeng, 1984, et al. (author)
  • Templated Growth of Covalently Bonded Three-Dimensional Carbon Nanotube Networks Originated from Graphene
  • 2012
  • In: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 24:12, s. 1576-1581
  • Journal article (peer-reviewed)abstract
    • A template-assisted method that enables the growth of covalently bonded three-dimensional carbon nanotubes (CNTs) originating from graphene at a large scale is demonstrated. Atomic force microscopy-based mechanical tests show that the covalently bonded CNT structure can effectively distribute external loading throughout the network to improve the mechanical strength of the material.
  •  
3.
  • Sun, Jie, 1977, et al. (author)
  • Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide
  • 2012
  • In: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 111:4
  • Journal article (peer-reviewed)abstract
    • Metal-catalyst-free chemical vapor deposition (CVD) of large area uniform nanocrystalline graphene on oxidized silicon substrates is demonstrated. The material grows slowly, allowing for thickness control down to monolayer graphene. The as-grown thin films are continuous with no observable pinholes, and are smooth and uniform across whole wafers, as inspected by optical-, scanning electron-, and atomic force microscopy. The sp(2) hybridized carbon structure is confirmed by Raman spectroscopy. Room temperature electrical measurements show ohmic behavior (sheet resistance similar to exfoliated graphene) and up to 13% of electric-field effect. The Hall mobility is similar to 40 cm(2)/ Vs, which is an order of magnitude higher than previously reported values for nanocrystalline graphene. Transmission electron microscopy, Raman spectroscopy, and transport measurements indicate a graphene crystalline domain size similar to 10 nm. The absence of transfer to another substrate allows avoidance of wrinkles, holes, and etching residues which are usually detrimental to device performance. This work provides a broader perspective of graphene CVD and shows a viable route toward applications involving transparent electrodes.
  •  
4.
  • Sun, Jie, 1977, et al. (author)
  • Direct Chemical Vapor Deposition of Large-Area Carbon Thin Films on Gallium Nitride for Transparent Electrodes: A First Attempt
  • 2012
  • In: IEEE Transactions on Semiconductor Manufacturing. - : Institute of Electrical and Electronics Engineers (IEEE). - 0894-6507 .- 1558-2345. ; 25:3, s. 494-501
  • Journal article (peer-reviewed)abstract
    • Direct formation of large-area carbon thin films on gallium nitride by chemical vapor deposition without metallic catalysts is demonstrated. A high flow of ammonia is used to stabilize the surface of the GaN (0001)/sapphire substrate during the deposition at 950 degrees C. Various characterization methods verify that the synthesized thin films are largely sp(2) bonded, macroscopically uniform, and electrically conducting. The carbon thin films possess optical transparencies comparable to that of exfoliated graphene. This paper offers a viable route toward the use of carbon-based materials for future transparent electrodes in III-nitride optoelectronics, such as GaN-based light emitting diodes and laser diodes.
  •  
5.
  • Sun, Jie, 1977, et al. (author)
  • Low Partial Pressure Chemical Vapor Deposition of Graphene on Copper
  • 2012
  • In: IEEE Transactions on Nanotechnology. - 1941-0085 .- 1536-125X. ; 11:2, s. 255-260
  • Journal article (peer-reviewed)abstract
    • A systematic study of the Cu-catalyzed chemical vapor deposition of graphene under extremely low partial pressure is carried out. A carbon precursor supply of just P-CH4 similar to 0.009 mbar during the deposition favors the formation of large-area uniform monolayer graphene verified by Raman spectra. A diluted HNO3 solution is used to remove Cu before transferring graphene onto SiO2/Si substrates or carbon grids. The graphene can be made suspended over a similar to 12 mu m distance, indicating its good mechanical properties. Electron transport measurements show the graphene sheet resistance of similar to 0.6 k Omega/square at zero gate voltage. The mobilities of electrons and holes are similar to 1800 cm(2)/Vs at 4.2 K and similar to 1200 cm(2)/Vs at room temperature.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view