SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sun Jie 1977) ;pers:(Wang Le)"

Search: WFRF:(Sun Jie 1977) > Wang Le

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dong, Yibo, et al. (author)
  • In Situ Growth of CVD Graphene Directly on Dielectric Surface toward Application
  • 2020
  • In: ACS Applied Electronic Materials. - : American Chemical Society (ACS). - 2637-6113. ; 2:1, s. 238-246
  • Journal article (peer-reviewed)abstract
    • A technique for the in situ growth of patterned graphene by CVD has been achieved directly on insulating substrates at 800 degrees C. The graphene growth is catalyzed by a Ni-Cu alloy sacrificial layer, which integrates many advantages such as being lithography-free, and almost wrinkle-free, with a high repeatability and rapid growth. The etching method of the metal sacrificial layer is the core of this technique, and the mechanism is analyzed. Graphene has been found to play an important role in accelerating etching speeds. The Ni-Cu alloy exhibits a high catalytic activity, and thus, high-quality graphene can be obtained at a lower temperature. Moreover, the Ni-Cu layer accommodates a limited amount of carbon atoms, which ensures a high monolayer ratio of the graphene. The carbon solid solubility of the alloy is calculated theoretically and used to explain the experimental findings. The method is compatible with the current semiconductor process and is conducive to the industrialization of graphene devices.
  •  
2.
  • Dong, Yibo, et al. (author)
  • Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst
  • 2018
  • In: Nanotechnology. - : IOP Publishing. - 1361-6528 .- 0957-4484. ; 29:36
  • Journal article (peer-reviewed)abstract
    • Chemical vapor deposited graphene suffers from two problems: transfer from metal catalysts to insulators, and photoresist induced degradation during patterning. Both result in macroscopic and microscopic damages such as holes, tears, doping, and contamination, translated into property and yield dropping. We attempt to solve the problems simultaneously. A nickel thin film is evaporated on SiO2 as a sacrificial catalyst, on which surface graphene is grown. A polymer (PMMA) support is spin-coated on the graphene. During the Ni wet etching process, the etchant can permeate the polymer, making the etching efficient. The PMMA/graphene layer is fixed on the substrate by controlling the surface morphology of Ni film during the graphene growth. After etching, the graphene naturally adheres to the insulating substrate. By using this method, transfer-free, lithography-free and fast growth of graphene realized. The whole experiment has good repeatability and controllability. Compared with graphene transfer between substrates, here, no mechanical manipulation is required, leading to minimal damage. Due to the presence of Ni, the graphene quality is intrinsically better than catalyst-free growth. The Ni thickness and growth temperature are controlled to limit the number of layers of graphene. The technology can be extended to grow other two-dimensional materials with other catalysts.
  •  
3.
  • Wang, Le, et al. (author)
  • Issue of spatial coherence in MQW based micro-LED simulation
  • 2021
  • In: Optics Express. - 1094-4087 .- 1094-4087. ; 29:20, s. 31520-31526
  • Journal article (peer-reviewed)abstract
    • In existing flip-chip LED simulations, the light extraction efficiency is related to the multiple quantum well (MQW) to metal reflector distance because of optical interference. We calculate the contrast using several typical light intensity distributions among the several QWs in MQW. The coherence is obtained analytically. When the luminosity of each QW is equal, the contrast is ∼0, meaning the light is incoherent, contrary to traditional studies. The spatial coherence is important only when the light emission comes from just one QW. As the MQW has a not negligible thickness, the traditional single-dipole model is no longer accurate.
  •  
4.
  • Xiong, Fangzhu, et al. (author)
  • Transfer-free graphene-like thin films on GaN LED epiwafers grown by PECVD using an ultrathin Pt catalyst for transparent electrode applications
  • 2019
  • In: Materials. - : MDPI AG. - 1996-1944. ; 12:21, s. 1-12
  • Journal article (peer-reviewed)abstract
    • In this work, we grew transfer-free graphene-like thin films (GLTFs) directly on gallium nitride (GaN)/sapphire light-emitting diode (LED) substrates. Their electrical, optical and thermal properties were studied for transparent electrode applications. Ultrathin platinum (2 nm) was used as the catalyst in the plasma-enhanced chemical vapor deposition (PECVD). The growth parameters were adjusted such that the high temperature exposure of GaN wafers was reduced to its minimum (deposition temperature as low as 600 °C) to ensure the intactness of GaN epilayers. In a comparison study of the Pt-GLTF GaN LED devices and Pt-only LED devices, the former was found to be superior in most aspects, including surface sheet resistance, power consumption, and temperature distribution, but not in optical transmission. This confirmed that the as-developed GLTF-based transparent electrodes had good current spreading, current injection and thermal spreading functionalities. Most importantly, the technique presented herein does not involve any material transfer, rendering a scalable, controllable, reproducible and semiconductor industry-compatible solution for transparent electrodes in GaN-based optoelectronic devices.
  •  
5.
  • Yuan, Ying Kuo, et al. (author)
  • Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode
  • 2021
  • In: Wuli Xuebao/Acta Physica Sinica. - : Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. - 1000-3290. ; 70:19
  • Journal article (peer-reviewed)abstract
    • In the information display field, micro-light-emitting diodes (micro-LEDs) possess high potentials and they are expected to lead the direction of developing the next-generation new display technologies. Their display performances are superior to those produced by the currently prevailing liquid crystal and organic light-emitting diode based technologies. However, the micro-LED pixels and their driving circuits are often fabricated on different wafers, which implies that the so-called mass transfer seems to be inevitable, thus facing an obvious bottleneck. In this paper, the emerging graphene field effect transistors are used as the driving elements and integrated onto the GaN micro-LEDs, which is because the pixels and drivers are prepared directly on the same wafer, the technical problem of mass transfer is fundamentally bypassed. Furthermore, in traditional lithographic process, the ultraviolet photoresist directly contacts the graphene, which introduces severe carrier doping, thereby leading to deteriorated graphene transistor properties. This, not surprisingly, further translates into lower performances of the integrated devices. In the present work, proposed is a technique in which the polymethyl methacrylate (PMMA) thin films act as both the protection layers and the interlayers when optimizing the graphene field effect transistor processing. The PMMA layers are sandwiched between the graphene and the ultraviolet photoresist, which is a brand new device fabrication process. First, the new process is tested in discrete graphene field effect transistors. Compared with those devices that are processed without the PMMA protection thin films, the graphene devices fabricated with the new technology typically show their Dirac point at a gate voltage (Vg) deviation from Vg = 0, that is, 22 V lower than their counterparts. In addition, an increase in the carrier mobility of 32% is also observed. Finally, after applying the newly developed fabrication process to the pixel-and-driver integrated devices, it is found that their performances are improved significantly. With this new technique, the ultraviolet photoresist no longer directly contacts the sensitive graphene channel because of the PMMA protection. The doping effect and the performance dropping are dramatically reduced. The technique is facile and cheap, and it is also applicable to two-dimensional materials besides graphene, such as MoS2 and h-BN. It is hoped that it is of some value for device engineers working in this field.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view