SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sun Jie 1977) ;pers:(Xu Chen)"

Search: WFRF:(Sun Jie 1977) > Xu Chen

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dong, Y. B., et al. (author)
  • The growth of graphene on Ni–Cu alloy thin films at a low temperature and its carbon diffusion mechanism
  • 2019
  • In: Nanomaterials. - : MDPI AG. - 2079-4991. ; 9:11
  • Journal article (peer-reviewed)abstract
    • Carbon solid solubility in metals is an important factor affecting uniform graphene growth by chemical vapor deposition (CVD) at high temperatures. At low temperatures, however, it was found that the carbon diffusion rate (CDR) on the metal catalyst surface has a greater impact on the number and uniformity of graphene layers compared with that of the carbon solid solubility. The CDR decreases rapidly with decreasing temperatures, resulting in inhomogeneous and multilayer graphene. In the present work, a Ni–Cu alloy sacrificial layer was used as the catalyst based on the following properties. Cu was selected to increase the CDR, while Ni was used to provide high catalytic activity. By plasma-enhanced CVD, graphene was grown on the surface of Ni–Cu alloy under low pressure using methane as the carbon source. The optimal composition of the Ni–Cu alloy, 1:2, was selected through experiments. In addition, the plasma power was optimized to improve the graphene quality. On the basis of the parameter optimization, together with our previously-reported, in-situ, sacrificial metal-layer etching technique, relatively homogeneous wafer-size patterned graphene was obtained directly on a 2-inch SiO2 /Si substrate at a low temperature (~600◦ C).
  •  
2.
  • Dong, Yibo, et al. (author)
  • In Situ Growth of CVD Graphene Directly on Dielectric Surface toward Application
  • 2020
  • In: ACS Applied Electronic Materials. - : American Chemical Society (ACS). - 2637-6113. ; 2:1, s. 238-246
  • Journal article (peer-reviewed)abstract
    • A technique for the in situ growth of patterned graphene by CVD has been achieved directly on insulating substrates at 800 degrees C. The graphene growth is catalyzed by a Ni-Cu alloy sacrificial layer, which integrates many advantages such as being lithography-free, and almost wrinkle-free, with a high repeatability and rapid growth. The etching method of the metal sacrificial layer is the core of this technique, and the mechanism is analyzed. Graphene has been found to play an important role in accelerating etching speeds. The Ni-Cu alloy exhibits a high catalytic activity, and thus, high-quality graphene can be obtained at a lower temperature. Moreover, the Ni-Cu layer accommodates a limited amount of carbon atoms, which ensures a high monolayer ratio of the graphene. The carbon solid solubility of the alloy is calculated theoretically and used to explain the experimental findings. The method is compatible with the current semiconductor process and is conducive to the industrialization of graphene devices.
  •  
3.
  • Dong, Yibo, et al. (author)
  • Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst
  • 2018
  • In: Nanotechnology. - : IOP Publishing. - 1361-6528 .- 0957-4484. ; 29:36
  • Journal article (peer-reviewed)abstract
    • Chemical vapor deposited graphene suffers from two problems: transfer from metal catalysts to insulators, and photoresist induced degradation during patterning. Both result in macroscopic and microscopic damages such as holes, tears, doping, and contamination, translated into property and yield dropping. We attempt to solve the problems simultaneously. A nickel thin film is evaporated on SiO2 as a sacrificial catalyst, on which surface graphene is grown. A polymer (PMMA) support is spin-coated on the graphene. During the Ni wet etching process, the etchant can permeate the polymer, making the etching efficient. The PMMA/graphene layer is fixed on the substrate by controlling the surface morphology of Ni film during the graphene growth. After etching, the graphene naturally adheres to the insulating substrate. By using this method, transfer-free, lithography-free and fast growth of graphene realized. The whole experiment has good repeatability and controllability. Compared with graphene transfer between substrates, here, no mechanical manipulation is required, leading to minimal damage. Due to the presence of Ni, the graphene quality is intrinsically better than catalyst-free growth. The Ni thickness and growth temperature are controlled to limit the number of layers of graphene. The technology can be extended to grow other two-dimensional materials with other catalysts.
  •  
4.
  • Li, Kai, et al. (author)
  • Metal thermopile infrared detector with vertical graphene
  • 2023
  • In: Wuli Xuebao/Acta Physica Sinica. - : Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. - 1000-3290. ; 72:3
  • Journal article (peer-reviewed)abstract
    • Thermopile infrared detector is a kind of detector device mainly composed of thermocouple as the basic unit. Because of its simple principle, no need of cooling equipment, and other advantages, it has been widely used in various fields of production and life. However, the absorption rates of the materials in conventional thermopile devices are poor, and the majority of them are incompatible with microfabrication methods. In this work, a metal thermopile infrared detector with vertical graphene (VG) is designed and fabricated. The VG is grown via plasma enhanced chemical vapor deposition, and retained at the device’s thermal ends to provide the thermopile IR detector’s wideband and high response characteristics. The detector achieves a room temperature responsivity reaching a value as high as 1.53 V/W at 792 nm, which can increase the response results about 28 times and reduce the response time to 0.8 ms compared with the thermopile detector without VG. After systematically measuring the response results, it is finally found that there are three main mechanisms responsible for the response on the composite device. The first one is the response generated by the metal thermopile itself alone. The second one is the response increased eventually by the contribution of VG covered at the metal thermal junction that expands the temperature difference. The last one is the response generated by the temperature gradient existing inside the VG on the surface of the device after the absorption of heat. The portion of each partial response mechanism in the total response is also analyzed, providing a new reference direction for analyzing the response generation mechanism of thermopile detectors with other absorbing materials. The process is compatible with the microfabrication, while the device performance is enhanced and suitable for mass production. Furthermore, by utilizing the surface plasmon resonance to combine VG with metal nanoparticles, the material’ s light absorption is found to be enhanced significantly under the same conditions, and the resulting thermal voltage can be increased to 6 times. The results indicate that VG promises to possess practical applications, in many fields such as photoelectric sensing and power production devices. This technology provides a new method to manufacture high-performance thermopile infrared detectors and other sensor devices.
  •  
5.
  • Pan, G. Z., et al. (author)
  • Analysis of optical coupling behavior in two-dimensional implant-defined coherently coupled vertical-cavity surface-emitting laser arrays
  • 2018
  • In: Photonics Research. - 2327-9125. ; 6:11, s. 1048-1055
  • Journal article (peer-reviewed)abstract
    • Optical coupling behavior and associated effects in two-dimensional implant-defined coherently coupled vertical-cavity surface-emitting laser (VCSEL) arrays are studied via both experiments and theoretical calculations. Experiments show that optical coupling between array elements can enhance the array’s output power. Additionally, optical coupling via leaky optical fields can provide extra optical gain for the array elements, which can then reduce the thresholds of these elements. Elements can even be pumped without current injection to emit light by receiving a strong leaky optical field from other array elements. Optical coupling can also cause unusual phenomena: the central elements in large-area coherently coupled VCSEL arrays that lase prior to the outer elements when the arrays are biased, or the average injection current required for each element to lase, which is much lower than the threshold for a single VCSEL. Theoretical calculations are performed to explain the experimental results.
  •  
6.
  • Pan, G. Z., et al. (author)
  • Dependence of Beam Quality on Optical Intensity Asymmetry in In-Phase Coherently Coupled VCSEL Array
  • 2018
  • In: IEEE Journal of Quantum Electronics. - 0018-9197 .- 1558-1713. ; 54:3
  • Journal article (peer-reviewed)abstract
    • Dependence of beam quality on optical intensity asymmetry among elements in in-phase coherently coupled vertical cavity surface emitting lasers array is analyzed using the finite-difference time domain solutions software. The analysis results reveal that the coupling efficiency of in-phased array decreases and the divergence increases as the level of optical intensity asymmetry increases. Furthermore, an addressable separated-contact three-element triangular in-phased array is fabricated and measured to verify the analysis. The array exhibits a relatively high of coupling efficiency of 24% and a near-diffraction-limit divergence of 3.2° (1.12 times of the diffraction limit, D.L.) when the optical intensity of each element is adjusted to be uniform. By degrading the optical intensity symmetry, the coupling efficiency decreases to 17.07% and the divergence increases to 4.03° ( 1.37× D.L.). After that, a much larger 10× 10 array exhibiting in-phase characteristics is produced and its beam quality and optical uniformity are measured and discussed. Analysis and experiment results demonstrate that symmetric optical intensity among elements is essential for in-phased array to achieve high beam quality. Employing separate contacts in the array is proved an effective way to obtain uniform optical intensity and achieve high beam quality.
  •  
7.
  • Pan, G. Z., et al. (author)
  • Large-Scale Proton-Implant-Defined VCSEL Arrays with Narrow Beamwidth
  • 2018
  • In: IEEE Electron Device Letters. - 0741-3106 .- 1558-0563. ; 39:3, s. 390-393
  • Journal article (peer-reviewed)abstract
    • In-phase coherently coupled proton-implant-defined vertical cavity surface emitting laser (VCSEL) arrays face difficulties in current spreading, resulting in small array scale, low output power, and broad beamwidth. Although patterned metal grids can improve the current spreading, the undesirable out-of-phase mode tends to be dominant in the array. In this letter, by means of engineering the implantation and array parameters, in-phase mode is obtained in large-scale proton-implant-defined arrays with metal grids. Experimental results show that these arrays are operating in in-phase mode with a nominal interelement spacing of 8 μm and an implantation depth of 2.22 μm. By using these parameters, a 5 × 5 in-phase array with a narrow beamwidth (far-field full width at half maximum) of 1.61° is realized. Besides, a 10 × 10 in-phase array with a beamwidth of 1.89° and an output power of 10.25 mW for the in-phase mode is achieved. The calculation of far fields is performed to confirm the in-phase operation measured results. Such a simple and low-cost technology provides a promising method for preparing large-scale in-phase coherently coupled VCSEL arrays.
  •  
8.
  • Wang, Le, et al. (author)
  • Issue of spatial coherence in MQW based micro-LED simulation
  • 2021
  • In: Optics Express. - 1094-4087 .- 1094-4087. ; 29:20, s. 31520-31526
  • Journal article (peer-reviewed)abstract
    • In existing flip-chip LED simulations, the light extraction efficiency is related to the multiple quantum well (MQW) to metal reflector distance because of optical interference. We calculate the contrast using several typical light intensity distributions among the several QWs in MQW. The coherence is obtained analytically. When the luminosity of each QW is equal, the contrast is ∼0, meaning the light is incoherent, contrary to traditional studies. The spatial coherence is important only when the light emission comes from just one QW. As the MQW has a not negligible thickness, the traditional single-dipole model is no longer accurate.
  •  
9.
  • Yuan, Ying Kuo, et al. (author)
  • Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode
  • 2021
  • In: Wuli Xuebao/Acta Physica Sinica. - : Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. - 1000-3290. ; 70:19
  • Journal article (peer-reviewed)abstract
    • In the information display field, micro-light-emitting diodes (micro-LEDs) possess high potentials and they are expected to lead the direction of developing the next-generation new display technologies. Their display performances are superior to those produced by the currently prevailing liquid crystal and organic light-emitting diode based technologies. However, the micro-LED pixels and their driving circuits are often fabricated on different wafers, which implies that the so-called mass transfer seems to be inevitable, thus facing an obvious bottleneck. In this paper, the emerging graphene field effect transistors are used as the driving elements and integrated onto the GaN micro-LEDs, which is because the pixels and drivers are prepared directly on the same wafer, the technical problem of mass transfer is fundamentally bypassed. Furthermore, in traditional lithographic process, the ultraviolet photoresist directly contacts the graphene, which introduces severe carrier doping, thereby leading to deteriorated graphene transistor properties. This, not surprisingly, further translates into lower performances of the integrated devices. In the present work, proposed is a technique in which the polymethyl methacrylate (PMMA) thin films act as both the protection layers and the interlayers when optimizing the graphene field effect transistor processing. The PMMA layers are sandwiched between the graphene and the ultraviolet photoresist, which is a brand new device fabrication process. First, the new process is tested in discrete graphene field effect transistors. Compared with those devices that are processed without the PMMA protection thin films, the graphene devices fabricated with the new technology typically show their Dirac point at a gate voltage (Vg) deviation from Vg = 0, that is, 22 V lower than their counterparts. In addition, an increase in the carrier mobility of 32% is also observed. Finally, after applying the newly developed fabrication process to the pixel-and-driver integrated devices, it is found that their performances are improved significantly. With this new technique, the ultraviolet photoresist no longer directly contacts the sensitive graphene channel because of the PMMA protection. The doping effect and the performance dropping are dramatically reduced. The technique is facile and cheap, and it is also applicable to two-dimensional materials besides graphene, such as MoS2 and h-BN. It is hoped that it is of some value for device engineers working in this field.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view