SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sunyer Jordi) ;pers:(Koppelman Gerard H.)"

Sökning: WFRF:(Sunyer Jordi) > Koppelman Gerard H.

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Felix, Janine F, et al. (författare)
  • Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index.
  • 2016
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:2, s. 389-403
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.
  •  
2.
  • Lemonnier, Nathanaël, et al. (författare)
  • A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents
  • 2020
  • Ingår i: Allergy. European Journal of Allergy and Clinical Immunology. - : WILEY. - 0105-4538 .- 1398-9995. ; 75:12, s. 3248-3260
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Allergic diseases often occur in combination (multimorbidity). Human blood transcriptome studies have not addressed multimorbidity. Large-scale gene expression data were combined to retrieve biomarkers and signaling pathways to disentangle allergic multimorbidity phenotypes.Methods: Integrated transcriptomic analysis was conducted in 1233 participants with a discovery phase using gene expression data (Human Transcriptome Array 2.0) from whole blood of 786 children from three European birth cohorts (MeDALL), and a replication phase using RNA Sequencing data from an independent cohort (EVA-PR, n = 447). Allergic diseases (asthma, atopic dermatitis, rhinitis) were considered as single disease or multimorbidity (at least two diseases), and compared with no disease.Results: Fifty genes were differentially expressed in allergic diseases. Thirty-two were not previously described in allergy. Eight genes were consistently overexpressed in all types of multimorbidity for asthma, dermatitis, and rhinitis (CLC, EMR4P, IL5RA, FRRS1, HRH4, SLC29A1, SIGLEC8, IL1RL1). All genes were replicated the in EVA-PR cohort. RT-qPCR validated the overexpression of selected genes. In MeDALL, 27 genes were differentially expressed in rhinitis alone, but none was significant for asthma or dermatitis alone. The multimorbidity signature was enriched in eosinophil-associated immune response and signal transduction. Protein-protein interaction network analysis identified IL5/JAK/STAT and IL33/ST2/IRAK/TRAF as key signaling pathways in multimorbid diseases. Synergistic effect of multimorbidity on gene expression levels was found.Conclusion: A signature of eight genes identifies multimorbidity for asthma, rhinitis, and dermatitis. Our results have clinical and mechanistic implications, and suggest that multimorbidity should be considered differently than allergic diseases occurring alone.
  •  
3.
  • Merid, Simon Kebede, et al. (författare)
  • Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age
  • 2020
  • Ingår i: Genome Medicine. - Stockholm : Karolinska Institutet, Dept of Clinical Science and Education, Södersjukhuset. - 1756-994X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. Methods: We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. Results: We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P < 1.06 × 10- 7, of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. Conclusions: We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.
  •  
4.
  • Merid, Simon Kebede, et al. (författare)
  • Integration of gene expression and DNA methylation identifies epigenetically controlled modules related to PM2.5 exposure
  • 2020
  • Ingår i: Environment International. - Stockholm : Karolinska Institutet, Dept of Clinical Science and Education, Södersjukhuset. - 0160-4120 .- 1873-6750.
  • Tidskriftsartikel (refereegranskat)abstract
    • Air pollution has been associated with adverse health effects across the life-course. Although underlying mechanisms are unclear, several studies suggested pollutant-induced changes in transcriptomic profiles. In this meta-analysis of transcriptome-wide association studies of 656 children and adolescents from three European cohorts participating in the MeDALL Consortium, we found two differentially expressed transcript clusters (FDR p < 0.05) associated with exposure to particulate matter < 2.5 µm in diameter (PM2.5) at birth, one of them mapping to the MIR1296 gene. Further, by integrating gene expression with DNA methylation using Functional Epigenetic Modules algorithms, we identified 9 and 6 modules in relation to PM2.5 exposure at birth and at current address, respectively (including NR1I2, MAPK6, TAF8 and SCARA3). In conclusion, PM2.5 exposure at birth was linked to differential gene expression in children and adolescents. Importantly, we identified several significant interactome hotspots of gene modules of relevance for complex diseases in relation to PM2.5 exposure.
  •  
5.
  • Middeldorp, Christel M., et al. (författare)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • Ingår i: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
6.
  • Taal, H. Rob, et al. (författare)
  • Common variants at 12q15 and 12q24 are associated with infant head circumference
  • 2012
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 532-538
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.
  •  
7.
  • van der Valk, Ralf J P, et al. (författare)
  • A novel common variant in DCST2 is associated with length in early life and height in adulthood.
  • 2015
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 24:4, s. 1155-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
  •  
8.
  • Vogelezang, Suzanne, et al. (författare)
  • Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits.
  • 2020
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 16:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
  •  
9.
  • Wang, Gang, et al. (författare)
  • Spirometric phenotypes from early childhood to young adulthood : a Chronic Airway Disease Early Stratification study
  • 2021
  • Ingår i: ERJ Open Research. - : ERS Publications. - 2312-0541. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The prevalences of obstructive and restrictive spirometric phenotypes, and their relation to early-life risk factors from childhood to young adulthood remain poorly understood. The aim was to explore these phenotypes and associations with well-known respiratory risk factors across ages and populations in European cohorts.Methods: We studied 49334 participants from 14 population-based cohorts in different age groups (⩽10, >10–15, >15–20, >20–25 years, and overall, 5–25 years). The obstructive phenotype was defined as forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) z-score less than the lower limit of normal (LLN), whereas the restrictive phenotype was defined as FEV1/FVC z-score ⩾LLN, and FVC z-score Results: The prevalence of obstructive and restrictive phenotypes varied from 3.2–10.9% and 1.8–7.7%, respectively, without clear age trends. A diagnosis of asthma (adjusted odds ratio (aOR=2.55, 95% CI 2.14–3.04), preterm birth (aOR=1.84, 1.27–2.66), maternal smoking during pregnancy (aOR=1.16, 95% CI 1.01–1.35) and family history of asthma (aOR=1.44, 95% CI 1.25–1.66) were associated with a higher prevalence of obstructive, but not restrictive, phenotype across ages (5–25 years). A higher current body mass index (BMI was more often observed in those with the obstructive phenotype but less in those with the restrictive phenotype (aOR=1.05, 95% CI 1.03–1.06 and aOR=0.81, 95% CI 0.78–0.85, per kg·m−2 increase in BMI, respectively). Current smoking was associated with the obstructive phenotype in participants older than 10 years (aOR=1.24, 95% CI 1.05–1.46).Conclusion: Obstructive and restrictive phenotypes were found to be relatively prevalent during childhood, which supports the early origins concept. Several well-known respiratory risk factors were associated with the obstructive phenotype, whereas only low BMI was associated with the restrictive phenotype, suggesting different underlying pathobiology of these two phenotypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (9)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
Sunyer, Jordi (9)
Heinrich, Joachim (6)
Melén, Erik (6)
Sebert, Sylvain (6)
Bustamante, Mariona (6)
visa fler...
Thiering, Elisabeth (6)
Melbye, Mads (5)
McCarthy, Mark I (5)
Boomsma, Dorret I. (5)
Hakonarson, Hakon (5)
Rivadeneira, Fernand ... (5)
Uitterlinden, André ... (5)
Pennell, Craig E (5)
Holloway, John W (5)
Zeggini, Eleftheria (5)
Timpson, Nicholas J. (5)
Ntalla, Ioanna (5)
Horikoshi, Momoko (5)
Geller, Frank (5)
Bradfield, Jonathan ... (5)
Bisgaard, Hans (5)
Feenstra, Bjarke (5)
Atalay, Mustafa (5)
Jaddoe, Vincent W V (5)
Custovic, Adnan (5)
Standl, Marie (5)
Grant, Struan F A (5)
Cousminer, Diana L (5)
Simpson, Angela (5)
Lindi, Virpi (5)
Jacobsson, Bo, 1960 (4)
Magnus, Per (4)
Raitakari, Olli T (4)
Jarvelin, Marjo-Riit ... (4)
Kull, Inger (4)
Bergström, Anna (4)
Vonk, Judith M (4)
Hirschhorn, Joel N. (4)
Hottenga, Jouke-Jan (4)
Dedoussis, George V. (4)
Ang, Wei (4)
Felix, Janine F (4)
Freathy, Rachel M (4)
Lakka, Timo A (4)
Torrent, Maties (4)
Widen, Elisabeth (4)
Panoutsopoulou, Kall ... (4)
Curtin, John A (4)
Pahkala, Katja (4)
visa färre...
Lärosäte
Karolinska Institutet (6)
Göteborgs universitet (4)
Mittuniversitetet (3)
Umeå universitet (1)
Uppsala universitet (1)
Örebro universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy