SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Suo Chao) "

Sökning: WFRF:(Suo Chao)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abé, Christoph, et al. (författare)
  • Longitudinal Structural Brain Changes in Bipolar Disorder: A Multicenter Neuroimaging Study of 1232 Individuals by the ENIGMA Bipolar Disorder Working Group.
  • 2022
  • Ingår i: Biological psychiatry. - : Elsevier BV. - 1873-2402 .- 0006-3223. ; 91:6, s. 582-592
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is associated with cortical and subcortical structural brain abnormalities. It is unclear whether such alterations progressively change over time, and how this is related to the number of mood episodes. To address this question, we analyzed a large and diverse international sample with longitudinal magnetic resonance imaging (MRI) and clinical data to examine structural brain changes over time in BD.Longitudinal structural MRI and clinical data from the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) BD Working Group, including 307 patients with BD and 925 healthy control subjects, were collected from 14 sites worldwide. Male and female participants, aged 40 ± 17 years, underwent MRI at 2 time points. Cortical thickness, surface area, and subcortical volumes were estimated using FreeSurfer. Annualized change rates for each imaging phenotype were compared between patients with BD and healthy control subjects. Within patients, we related brain change rates to the number of mood episodes between time points and tested for effects of demographic and clinical variables.Compared with healthy control subjects, patients with BD showed faster enlargement of ventricular volumes and slower thinning of the fusiform and parahippocampal cortex (0.18
  •  
2.
  • Barth, Claudia, et al. (författare)
  • In vivo white matter microstructure in adolescents with early-onset psychosis : a multi-site mega-analysis
  • 2023
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 28, s. 1159-1169
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging evidence suggests brain white matter alterations in adolescents with early-onset psychosis (EOP; age of onset <18 years). However, as neuroimaging methods vary and sample sizes are modest, results remain inconclusive. Using harmonized data processing protocols and a mega-analytic approach, we compared white matter microstructure in EOP and healthy controls using diffusion tensor imaging (DTI). Our sample included 321 adolescents with EOP (median age=16.6 years, interquartile range (IQR)=2.14, 46.4% females) and 265 adolescent healthy controls (median age=16.2 years, IQR=2.43, 57.7% females) pooled from nine sites. All sites extracted mean fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) for 25 white matter regions of interest per participant. ComBat harmonization was performed for all DTI measures to adjust for scanner differences. Multiple linear regression models were fitted to investigate case-control differences and associations with clinical variables in regional DTI measures. We found widespread lower FA in EOP compared to healthy controls, with the largest effect sizes in the superior longitudinal fasciculus (Cohen's d=0.37), posterior corona radiata (d=0.32), and superior fronto-occipital fasciculus (d=0.31). We also found widespread higher RD and more localized higher MD and AD. We detected significant effects of diagnostic subgroup, sex, and duration of illness, but not medication status. Using the largest EOP DTI sample to date, our findings suggest a profile of widespread white matter microstructure alterations in adolescents with EOP, most prominently in male individuals with early-onset schizophrenia and individuals with a shorter duration of illness.
  •  
3.
  • Esteban-Cornejo, Irene, et al. (författare)
  • Fitness, cortical thickness and surface area in overweight/obese children: The mediating role of body composition and relationship with intelligence
  • 2019
  • Ingår i: NeuroImage. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 1053-8119 .- 1095-9572. ; 186, s. 771-781
  • Tidskriftsartikel (refereegranskat)abstract
    • Cortical thickness and surface area are thought to be genetically unrelated and shaped by independent neurobiological events suggesting that they should be considered separately in morphometric analyses. Although the developmental trajectories of cortical thickness and surface area may differ across brain regions and ages, there is no consensus regarding the relationships of physical fitness with cortical thickness and surface area as well as for its subsequent influence on intelligence. Thus, this study examines: (i) the associations of physical fitness components (i.e., cardiorespiratory fitness, speed-agility and muscular fitness) with overall and regional cortical thickness and surface area; (ii) whether body composition indicators (i.e., body mass index, fat-free mass index and fat mass index) mediate these associations; and (iii) the association of physical fitness and cortical thickness with intelligence in overweight/obese children. A total of 101 overweight/obese children aged 8-11 years were recruited in Granada, Spain. The physical fitness components were assessed following the ALPHA health-related fitness test battery. T1-weighted images were acquired with a 3.0 Tesla Siemens Magnetom Tim Trio system. We used FreeSurfer software version 5.3.0 to assess cortical thickness (mm) and surface area (mm(2)). The main results showed that cardiorespiratory fitness and speed-agility were related to overall cortical thickness (beta = 0.321 and beta = 0.302, respectively; both P amp;lt; 0.05), and in turn, cortical thickness was associated with higher intelligence (beta = 0.198, P amp;lt; 0.05). Muscular fitness was not related to overall cortical thickness. None of the three physical fitness components were related to surface area (p amp;gt; 0.05). The associations of cardiorespiratory fitness and speed-agility with overall cortical thickness were mediated by fat mass index (56.86% amp; 62.28%, respectively). In conclusion, cardiorespiratory fitness and speed-agility, but not muscular fitness, are associated with overall cortical thickness, and in turn, thicker brain cortex is associated with higher intelligence in overweight/obese children. Yet, none of the three physical fitness components were related to surface area. Importantly, adiposity may hinder the benefits of cardiorespiratory fitness and speed-agility on cortical thickness. Understanding individual differences in brain morphology may have important implications for educators and policy makers who aim to determine policies and interventions to maximize academic learning and occupational success later in life.
  •  
4.
  • Gao, Xindi, et al. (författare)
  • Cryptococcal Hsf3 controls intramitochondrial ROS homeostasis by regulating the respiratory process
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial quality control prevents accumulation of intramitochondrial-derived reactive oxygen species (mtROS), thereby protecting cells against DNA damage, genome instability, and programmed cell death. However, underlying mechanisms are incompletely understood, particularly in fungal species. Here, we show that Cryptococcus neoformans heat shock factor 3 (CnHsf3) exhibits an atypical function in regulating mtROS independent of the unfolded protein response. CnHsf3 acts in nuclei and mitochondria, and nuclear- and mitochondrial-targeting signals are required for its organelle-specific functions. It represses the expression of genes involved in the tricarboxylic acid cycle while promoting expression of genes involved in electron transfer chain. In addition, CnHsf3 responds to multiple intramitochondrial stresses; this response is mediated by oxidation of the cysteine residue on its DNA binding domain, which enhances DNA binding. Our results reveal a function of HSF proteins in regulating mtROS homeostasis that is independent of the unfolded protein response.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy