SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svensson J.) ;pers:(Svensson Per Arne 1969)"

Sökning: WFRF:(Svensson J.) > Svensson Per Arne 1969

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jersin, R. A., et al. (författare)
  • Role of the Neutral Amino Acid Transporter SLC7A10 in Adipocyte Lipid Storage, Obesity, and Insulin Resistance
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 70:3, s. 680-695
  • Tidskriftsartikel (refereegranskat)abstract
    • Elucidation of mechanisms that govern lipid storage, oxidative stress, and insulin resistance may lead to improved therapeutic options for type 2 diabetes and other obesity-related diseases. Here, we find that adipose expression of the small neutral amino acid transporter SLC7A10, also known as alanine-serine-cysteine transporter-1 (ASC-1), shows strong inverse correlates with visceral adiposity, insulin resistance, and adipocyte hypertrophy across multiple cohorts. Concordantly, loss of Slc7a10 function in zebrafish in vivo accelerates diet-induced body weight gain and adipocyte enlargement. Mechanistically, SLC7A10 inhibition in human and murine adipocytes decreases adipocyte serine uptake and total glutathione levels and promotes reactive oxygen species (ROS) generation. Conversely, SLC7A10 overexpression decreases ROS generation and increases mitochondrial respiratory capacity. RNA sequencing revealed consistent changes in gene expression between human adipocytes and zebrafish visceral adipose tissue following loss of SLC7A10, e.g., upregulation of SCD (lipid storage) and downregulation of CPT1A (lipid oxidation). Interestingly, ROS scavenger reduced lipid accumulation and attenuated the lipid-storing effect of SLC7A10 inhibition. These data uncover adipocyte SLC7A10 as a novel important regulator of adipocyte resilience to nutrient and oxidative stress, in part by enhancing glutathione levels and mitochondrial respiration, conducive to decreased ROS generation, lipid accumulation, adipocyte hypertrophy, insulin resistance, and type 2 diabetes.
  •  
2.
  • Pereira, Maria J, 1981-, et al. (författare)
  • FKBP5 expression in human adipose tissue increases following dexamethasone exposure and is associated with insulin resistance
  • 2014
  • Ingår i: Metabolism: Clinical and Experimental. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 63:9, s. 1198-1208
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To study effects of dexamethasone on gene expression in human adipose tissue aiming to identify potential novel mechanisms for glucocorticoid-induced insulin resistance. Materials/methods Subcutaneous and omental adipose tissue, obtained from non-diabetic donors (10 M/15 F; age: 28-60 years; BMI: 20.7-30.6 kg/m2), was incubated with or without dexamethasone (0.003-3 μmol/L) for 24 h. Gene expression was assessed by microarray and real time-PCR and protein expression by immunoblotting. Results FKBP5 (FK506-binding protein 5) and CNR1 (cannabinoid receptor 1) were the most responsive genes to dexamethasone in both subcutaneous and omental adipose tissue (~ 7-fold). Dexamethasone increased FKBP5 gene and protein expression in a dose-dependent manner in both depots. The gene product, FKBP51 protein, was 10-fold higher in the omental than in the subcutaneous depot, whereas the mRNA levels were similar. Higher FKBP5 gene expression in omental adipose tissue was associated with reduced insulin effects on glucose uptake in both depots. Furthermore, FKBP5 gene expression in subcutaneous adipose tissue was positively correlated with serum insulin, HOMA-IR and subcutaneous adipocyte diameter and negatively with plasma HDL-cholesterol. FKBP5 SNPs were found to be associated with type 2 diabetes and diabetes-related phenotypes in large population-based samples. Conclusions Dexamethasone exposure promotes expression of FKBP5 in adipose tissue, a gene that may be implicated in glucocorticoid-induced insulin resistance. © 2014 Elsevier Inc.
  •  
3.
  • Claussnitzer, M., et al. (författare)
  • FTO Obesity Variant Circuitry and Adipocyte Browning in Humans
  • 2015
  • Ingår i: New England Journal of Medicine. - 0028-4793. ; 373:10, s. 895-907
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Genomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging. The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive. We examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity. We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR-Cas9 genome editing in samples from patients. Our data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner. The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a potent preadipocyte enhancer and a doubling of IRX3 and IRX5 expression during early adipocyte differentiation. This results in a cell-autonomous developmental shift from energy-dissipating beige (brite) adipocytes to energy-storing white adipocytes, with a reduction in mitochondrial thermogenesis by a factor of 5, as well as an increase in lipid storage. Inhibition of Irx3 in adipose tissue in mice reduced body weight and increased energy dissipation without a change in physical activity or appetite. Knockdown of IRX3 or IRX5 in primary adipocytes from participants with the risk allele restored thermogenesis, increasing it by a factor of 7, and overexpression of these genes had the opposite effect in adipocytes from nonrisk-allele carriers. Repair of the ARID5B motif by CRISPR-Cas9 editing of rs1421085 in primary adipocytes from a patient with the risk allele restored IRX3 and IRX5 repression, activated browning expression programs, and restored thermogenesis, increasing it by a factor of 7. Our results point to a pathway for adipocyte thermogenesis regulation involving ARID5B, rs1421085, IRX3, and IRX5, which, when manipulated, had pronounced pro-obesity and anti-obesity effects. (Funded by the German Research Center for Environmental Health and others.)
  •  
4.
  • Taube, Magdalena, et al. (författare)
  • Evaluation of reference genes for gene expression studies in human brown adipose tissue.
  • 2015
  • Ingår i: Adipocyte. - : Informa UK Limited. - 2162-3945 .- 2162-397X. ; 4:4, s. 280-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Human brown adipose tissue (BAT) has during the last 5 year been subjected to an increasing research interest, due to its putative function as a target for future obesity treatments. The most commonly used method for molecular studies of human BAT is the quantitative polymerase chain reaction (qPCR). This method requires normalization to a reference gene (genes with uniform expression under different experimental conditions, e.g. similar expression levels between human BAT and WAT), but so far no evaluation of reference genes for human BAT has been performed. Two different microarray datasets with samples containing human BAT were used to search for genes with low variability in expression levels. Seven genes (FAM96B, GNB1, GNB2, HUWE1, PSMB2, RING1 and TPT1) identified by microarray analysis, and 8 commonly used reference genes (18S, B2M, GAPDH, LRP10, PPIA, RPLP0, UBC, and YWHAZ) were selected and further analyzed by quantitative PCR in both BAT containing perirenal adipose tissue and subcutaneous adipose tissue. Results were analyzed using 2 different algorithms (Normfinder and geNorm). Most of the commonly used reference genes displayed acceptably low variability (geNorm M-values <0.5) in the samples analyzed, but the novel reference genes identified by microarray displayed an even lower variability (M-values <0.25). Our data suggests that PSMB2, GNB2 and GNB1 are suitable novel reference genes for qPCR analysis of human BAT and we recommend that they are included in future gene expression studies of human BAT.
  •  
5.
  • Ahlin, Sofie, 1985, et al. (författare)
  • Macrophage Gene Expression in Adipose Tissue is Associated with Insulin Sensitivity and Serum Lipid Levels Independent of Obesity.
  • 2013
  • Ingår i: Obesity (Silver Spring, Md.). - : Wiley. - 1930-739X .- 1930-7381. ; 21:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Obesity is linked to both increased metabolic disturbances and increased adipose tissue macrophage infiltration. However, whether macrophage infiltration directly influences human metabolism is unclear. The aim of this study was to investigate if there are obesity-independent links between adipose tissue macrophages and metabolic disturbances. Design and Methods: Expression of macrophage markers in adipose tissue was analyzed by DNA microarrays in the SOS Sib Pair study and in patients with type 2 diabetes and a BMI-matched healthy control group. Results: The expression of macrophage markers in adipose tissue was increased in obesity and associated with several metabolic and anthropometric measurements. After adjustment for BMI, the expression remained associated with insulin sensitivity, serum levels of insulin, C-peptide, high density lipoprotein cholesterol (HDL-cholesterol) and triglycerides. In addition, the expression of most macrophage markers was significantly increased in patients with type 2 diabetes compared to the control group. Conclusion: Our study shows that infiltration of macrophages in human adipose tissue, estimated by the expression of macrophage markers, is increased in subjects with obesity and diabetes and associated with insulin sensitivity and serum lipid levels independent of BMI. This indicates that adipose tissue macrophages may contribute to the development of insulin resistance and dyslipidemia.
  •  
6.
  • Barbosa, Edna J L, 1961, et al. (författare)
  • Extracellular water and blood pressure in adults with growth hormone (GH) deficiency: a genotype-phenotype association study.
  • 2014
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 9:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth hormone deficiency (GHD) in adults is associated with decreased extracellular water volume (ECW). In response to GH replacement therapy (GHRT), ECW increases and blood pressure (BP) reduces or remains unchanged. Our primary aim was to study the association between polymorphisms in genes related to renal tubular function with ECW and BP before and 1 year after GHRT. The ECW measures using bioimpedance analysis (BIA) and bioimpedance spectroscopy (BIS) were validated against a reference method, the sodium bromide dilution method (Br(-)).
  •  
7.
  • Barbosa, Edna J L, 1961, et al. (författare)
  • Genotypes associated with lipid metabolism contribute to differences in serum lipid profile of GH-deficient adults before and after GH replacement therapy.
  • 2012
  • Ingår i: European journal of endocrinology / European Federation of Endocrine Societies. - 1479-683X .- 0804-4643. ; 167:3, s. 353-62
  • Tidskriftsartikel (refereegranskat)abstract
    • bjective: GH deficiency (GHD) in adults is associated with an altered serum lipid profile that responds to GH replacement therapy (GHRT). This study evaluated the influence of polymorphisms in genes related to lipid metabolism on serum lipid profile before and after 1 year of GHRT in adults. Design and methods: In 318 GHD patients, total cholesterol (TC) serum concentrations, LDL-C, HDL-C, and triglycerides (TG) were assessed. Using a candidate gene approach, 20 single nucleotide polymorphisms (SNPs) were genotyped. GH dose was individually titrated to obtain normal serum IGF1 concentrations. Results: At baseline, the minor alleles of cholesteryl ester transfer protein (CETP) gene SNPs rs708272 and rs1800775 were associated with higher serum TC and apolipoprotein E (APOE) gene SNP rs7412 with lower TC concentrations; CETP SNPs rs708272, rs1800775, and rs3764261 and apolipoprotein B (APOB) gene SNP rs693 with higher serum HDL-C; APOE SNP rs7412, peroxisome proliferator-activated receptor gamma (PPARG) gene SNP rs10865710 with lower LDL-C, and CETP SNP rs1800775 with higher LDL-C; and APOE/C1/C4/C2 cluster SNP rs35136575 with lower serum TG. After treatment, APOB SNP rs676210 GG genotype was associated with larger reductions in TC and LDL-C and PPARG SNP rs10865710 CC genotype with greater TC reduction. All associations remained significant when adjusted for age, sex, and BMI. Conclusions: In GHD adults, multiple SNPs in genes related to lipid metabolism contributed to individual differences in baseline serum lipid profile. The GH treatment response in TC and LDL-C was influenced by polymorphisms in the APOB and PPARG genes.
  •  
8.
  • Benson, Mikael, 1954, et al. (författare)
  • DNA microarrays to study gene expression in allergic airways.
  • 2002
  • Ingår i: Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. - : Wiley. - 0954-7894 .- 1365-2222. ; 32:2, s. 301-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Allergic rhinitis results from interactions between a large number of cells and mediators in different compartments of the body. DNA microarrays allow simultaneous measurement of expression of thousands of genes in the same tissue sample.
  •  
9.
  • Boguszewski, C. L., et al. (författare)
  • Mechanisms in endocrinology: Clinical and pharmacogenetic aspects of the growth hormone receptor polymorphism
  • 2017
  • Ingår i: European Journal of Endocrinology. - 0804-4643. ; 177:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmacogenetics aims to maximize the beneficial effects of a medical therapy by identifying genetic finger prints from responders and non-responders and, thereby improving safety and efficacy profile of the drug. Most subjects who are deficient in growth hormone (GHD) are candidates for recombinant human GH (rhGH) therapy. To date, it is well established that even after adjustments for several clinical variables, such as age, gender, body composition and the age at onset of the GHD, response to rhGH treatment is highly variable among individuals, part of which is believed to be due to genetic factors within the GH system. As the first genetic variant to potentially influence the individual response to rhGH therapy in children with growth disorders, polymorphism in the GH receptor (GHR) has attracted a great interest as a target for pharmacogenetics. Studies have been conducted to compare the functional and molecular effects of the full-length GHR (fl-GHR) isoform with the exon 3 deleted (d3-GHR) isoform in children and adults treated with rhGH therapy. Additionally, the impact of the GHR polymorphism has been investigated in relation to the clinical status and response to medical treatment in acromegaly, especially to the GHR antagonist drug pegvisomant. We have performed a narrative review of the studies performed to date on the association of GHR polymorphism with rhGH response in children and adults, and its potential influence in the medical management of acromegaly. In addition, data from studies on the general population and in other chronic diseases examining a role of this genetic variant in the regulation of growth and metabolism are summarized. © 2017 European Society of Endocrinology.
  •  
10.
  • Fryk, Emanuel, et al. (författare)
  • Microdialysis and proteomics of subcutaneous interstitial fluid reveals increased galectin-1 in type 2 diabetes patients
  • 2016
  • Ingår i: Metabolism-Clinical and Experimental. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 65:7, s. 998-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. To identify a potential therapeutic target for type 2 diabetes by comparing the subcutaneous interstitial fluid from type 2 diabetes patients and healthy men. Methods. Proteomics was performed on the interstitial fluid of subcutaneous adipose tissue obtained by microdialysis from 7 type 2 diabetes patients and 8 healthy participants. 851 proteins were detected, of which 36 (including galectin-1) showed significantly altered expression in type 2 diabetes. We also measured galectin-1 expression in: (1) adipocytes isolated from adipose tissue biopsies from these participants; (2) subcutaneous adipose tissue of 24 obese participants before, during and after 16 weeks on a very low calorie diet (VLCD); and (3) adipocytes isolated from 6 healthy young participants after 4 weeks on a diet and lifestyle intervention to promote weight gain. We also determined the effect of galectin-1 on glucose uptake in human adipose tissue. Results. Galectin-1 protein levels were elevated in subcutaneous dialysates from type 2 diabetes compared with healthy controls (p < 0.05). In agreement, galectin-1 mRNA expression was increased in adipocytes from the type 2 diabetes patients (p < 0.05). Furthermore, galectin-1 mRNA expression was decreased in adipose tissue after VLCD (p < 0.05) and increased by overfeeding (p < 0.05). Co-incubation of isolated human adipocytes with galectin-1 reduced glucose uptake (p < 0.05) but this was independent of the insulin signal. Conclusion. Proteomics of the interstitial fluid in subcutaneous adipose tissue in vivo identified a novel adipokine, galectin-1, with a potential role in the pathophysiology of type 2 diabetes. (C) 2016 Elsevier Inc. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy