SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Swain Hilary M.) "

Sökning: WFRF:(Swain Hilary M.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pilla, Rachel M., et al. (författare)
  • Global data set of long-term summertime vertical temperature profiles in 153 lakes
  • 2021
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
  •  
2.
  • Doubek, Jonathan P., et al. (författare)
  • The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data
  • 2021
  • Ingår i: Limnology and Oceanography. - : WILEY. - 0024-3590 .- 1939-5590. ; 66:5, s. 1979-1992
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typically <2 degrees C. Day-to-day temperature change, in the absence of storms, often exceeded storm-induced temperature changes. Because storm-induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy