SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sweep F) "

Sökning: WFRF:(Sweep F)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  • Look, M, et al. (författare)
  • Pooled analysis of prognostic impact of uPA and PAI-I in breast cancer patients
  • 2003
  • Ingår i: Thrombosis and Haemostasis. - 0340-6245. ; 90:3, s. 538-548
  • Tidskriftsartikel (refereegranskat)abstract
    • In this report we present an extension of the pooled analysis of the prognostic impact of urokinase-type plasminogen activator (uPA) and its inhibitor PAI-I in breast cancer patients. We analyzed a different endpoint, metastasis-free survival (MFS). We checked the consistency of the estimates for uPA and PAI-I for relapse-free survival (RFS) and MFS exploring possible sources of heterogeneity. Nodal status, the most important prognostic factor for breast cancer, introduced heterogeneity in the uPA/PAI-I survival analyses, reflecting the interaction between nodal status and uPA/PAI-I. The estimates for uPA and PAI-I were found to be consistent, even when a different transformation of their values was used. The heterogeneity of the separate data sets decreased if the levels of uPA and PAI-I were ranked, data sets were pooled, and the analyses corrected for the base model that included all traditional prognostic factors, and stratified by data set. We conclude that uPA and PAI-I are ready to be used in the clinic to help classify breast cancer patients into high and low risk groups.
  •  
4.
  • Look, MP, et al. (författare)
  • Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 8377 breast cancer patients
  • 2002
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 94:2, s. 116-128
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Urokinase-type plasminogen activator (uPA) and its inhibitor (PAI-1) play essential roles in tumor invasion and metastasis. High levels of both uPA and PAT-1 are associated with poor prognosis in breast cancer patients. To confirm the prognostic value of uPA and PAI-1 in primary breast cancer, we reanalyzed individual patient data provided by members of the European Organization for Research and Treatment of Cancer-Receptor and Biomarker Group (EORTC-RBG). Methods: The study included 18 datasets involving 8377 breast cancer patients. During follow-up (median 79 months), 35% of the patients relapsed and 27% died. Levels of uPA and PAI-1 in tumor tissue extracts were determined by different immunoassays; values were ranked within each dataset and divided by the number of patients in that dataset to produce fractional ranks that could be compared directly across datasets. Associations of ranks of uPA and PAI-1 levels with relapse-free survival (RFS) and overall survival (OS) were analyzed by Cox multivariable regression analysis stratified by dataset, including the following traditional prognostic variables: age, menopausal status, lymph node status, tumor size, histologic grade, and steroid hormone-receptor status. All P values were two-sided. Results: Apart from lymph node status, high levels of uPA and PAI-1 were the strongest predictors of both poor RFS and poor OS in the analyses of all patients. Moreover, in both lymph node-positive and lymph nodenegative patients, higher uPA and PAI-1 values were independently associated with poor RFS and poor OS. For (untreated) lymph node-negative patients in particular, uPA and PAI-1 included together showed strong prognostic ability (all P<.001). Conclusions: This pooled analysis of the EORTC-RBG datasets confirmed the strong and independent prognostic value of uPA and PAI-1 in primary breast cancer. For patients with lymph node-negative breast cancer, uPA and PAI-1 measurements in primary tumors may be especially useful for designing individualized treatment strategies.
  •  
5.
  •  
6.
  •  
7.
  • Smid, Marcel, et al. (författare)
  • The circular RNome of primary breast cancer
  • 2019
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 29:3, s. 356-366
  • Tidskriftsartikel (refereegranskat)abstract
    • Circular RNAs (circRNAs) are a class of RNAs that is under increasing scrutiny, although their functional roles are debated. We analyzed RNA-seq data of 348 primary breast cancers and developed a method to identify circRNAs that does not rely on unmapped reads or known splice junctions. We identified 95,843 circRNAs, of which 20,441 were found recurrently. Of the circRNAs that match exon boundaries of the same gene, 668 showed a poor or even negative (R <0.2) correlation with the expression level of the linear gene. In silico analysis showed only a minority (8.5%) of circRNAs could be explained by known splicing events. Both these observations suggest that specific regulatory processes for circRNAs exist. We confirmed the presence of circRNAs of CNOT2, CREBBP, and RERE in an independent pool of primary breast cancers. We identified circRNA profiles associated with subgroups of breast cancers and with biological and clinical features, such as amount of tumor lymphocytic infiltrate and proliferation index. siRNA-mediated knockdown of circCNOT2 was shown to significantly reduce viability of the breast cancer cell lines MCF-7 and BT-474, further underlining the biological relevance of circRNAs. Furthermore, we found that circular, and not linear, CNOT2 levels are predictive for progression-free survival time to aromatase inhibitor (AI) therapy in advanced breast cancer patients, and found that circCNOT2 is detectable in cell-free RNA from plasma. We showed that circRNAs are abundantly present, show characteristics of being specifically regulated, are associated with clinical and biological properties, and thus are relevant in breast cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy