SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tajes Juan Fernandez) ;pers:(Franks Paul W.)"

Sökning: WFRF:(Tajes Juan Fernandez) > Franks Paul W.

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Atabaki-Pasdar, Naeimeh, et al. (författare)
  • Inferring causal pathways between metabolic processes and liver fat accumulation: an IMI DIRECT study
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) often co-occur. Defining causal pathways underlying this relationship may help optimize the prevention and treatment of both diseases. Thus, we assessed the strength and magnitude of the putative causal pathways linking dysglycemia and fatty liver, using a combination of causal inference methods.Measures of glycemia, insulin dynamics, magnetic resonance imaging (MRI)-derived abdominal and liver fat content, serological biomarkers, lifestyle, and anthropometry were obtained in participants from the IMI DIRECT cohorts (n=795 with new onset T2D and 2234 individuals free from diabetes). UK Biobank (n=3641) was used for modelling and replication purposes. Bayesian networks were employed to infer causal pathways, with causal validation using two-sample Mendelian randomization.Bayesian networks fitted to IMI DIRECT data identified higher basal insulin secretion rate (BasalISR) and MRI-derived excess visceral fat (VAT) accumulation as the features of dysmetabolism most likely to cause liver fat accumulation; the unconditional probability of fatty liver (>5%) increased significantly when conditioning on high levels of BasalISR and VAT (by 23%, 32% respectively; 40% for both). Analyses in UK Biobank yielded comparable results. MR confirmed most causal pathways predicted by the Bayesian networks.Here, BasalISR had the highest causal effect on fatty liver predisposition, providing mechanistic evidence underpinning the established association of NAFLD and T2D. BasalISR may represent a pragmatic biomarker for NAFLD prediction in clinical practice.Competing Interest StatementHR is an employee and shareholder of Sanofi. MIM: The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. MIM has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. As of June 2019, MIM is an employee of Genentech, and a holder of Roche stock. AM is a consultant for Lilly and has received research grants from several diabetes drug companies. PWF has received research grants from numerous diabetes drug companies and fess as consultant from Novo Nordisk, Lilly, and Zoe Global Ltd. He is currently the Scientific Director in Patient Care at the Novo Nordisk Foundation. Other authors declare non competing interests.Funding StatementThe work leading to this publication has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement 115317 (DIRECT) resources of which are composed of financial contribution from the European Union Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. NAP is supported in part by Henning och Johan Throne-Holsts Foundation, Hans Werthen Foundation, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. HPM is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AGJ is supported by an NIHR Clinician Scientist award (17/0005624). RK is funded by the Novo Nordisk Foundation (NNF18OC0031650) as part of a postdoctoral fellowship, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AK, PM, HF, JF and GNG are supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. TJM is funded by an NIHR clinical senior lecturer fellowship. S.Bru acknowledges support from the Novo Nordisk Foundation (grants NNF17OC0027594 and NNF14CC0001). ATH is a Wellcome Trust Senior Investigator and is also supported by the NIHR Exeter Clinical Research Facility. JMS acknowledges support from Science for Life Laboratory (Plasma Profiling Facility), Knut and Alice Wallenberg Foundation (Human Protein Atlas) and Erling-Persson Foundation (KTH Centre for Precision Medicine). MIM is supported by the following grants; Wellcome (090532, 098381, 106130, 203141, 212259); NIH (U01-DK105535). PWF is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Approval for the study protocol was obtained from each of the regional research ethics review boards separately (Lund, Sweden: 20130312105459927, Copenhagen, Denmark: H-1-2012-166 and H-1-2012-100, Amsterdam, Netherlands: NL40099.029.12, Newcastle, Dundee and Exeter, UK: 12/NE/0132), and all participants provided written informed consent at enrolment. The research conformed to the ethical principles for medical research involving human participants outlined in the Declaration of Helsinki.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAuthors agree to make data and materials supporting the results or analyses presented in their paper available upon reasonable request
  •  
2.
  • Behravesh, Masoud, et al. (författare)
  • A prospective study of the relationships between movement and glycemic control during day and night in pregnancy
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Both disturbed sleep and lack of exercise can disrupt metabolism in pregnancy. Accelerometery was used to objectively assess movement during waking (physical activity) and movement during sleeping (sleep disturbance) periods and evaluated relationships with continuous blood glucose variation during pregnancy. Data was analysed prospectively. 15-women without pre-existing diabetes mellitus wore continuous glucose monitors and triaxial accelerometers from February through June 2018 in Sweden. The relationships between physical activity and sleep disturbance with blood glucose rate of change were assessed. An interaction term was fitted to determine difference in the relationship between movement and glucose variation, conditional on waking/sleeping. Total movement was inversely related to glucose rate of change (p < 0.001, 95% CI (− 0.037, − 0.026)). Stratified analyses showed total physical activity was inversely related to glucose rate of change (p < 0.001, 95% CI (− 0.040, − 0.028)), whereas sleep disturbance was not related to glucose rate of change (p = 0.07, 95% CI (< − 0.001, 0.013)). The interaction term was positively related to glucose rate of change (p < 0.001, 95% CI (0.029, 0.047)). This study provides temporal evidence of a relationship between total movement and glycemic control in pregnancy, which is conditional on time of day. Movement is beneficially related with glycemic control while awake, but not during sleep.
  •  
3.
  • Coral, Daniel E, et al. (författare)
  • A phenome-wide comparative analysis of genetic discordance between obesity and type 2 diabetes
  • 2023
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 5:2, s. 237-247
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity and type 2 diabetes are causally related, yet there is considerable heterogeneity in the consequences of both conditions and the mechanisms of action are poorly defined. Here we show a genetic-driven approach defining two obesity profiles that convey highly concordant and discordant diabetogenic effects. We annotate and then compare association signals for these profiles across clinical and molecular phenotypic layers. Key differences are identified in a wide range of traits, including cardiovascular mortality, fat distribution, liver metabolism, blood pressure, specific lipid fractions and blood levels of proteins involved in extracellular matrix remodelling. We find marginal differences in abundance of Bacteroidetes and Firmicutes bacteria in the gut. Instrumental analyses reveal prominent causal roles for waist-to-hip ratio, blood pressure and cholesterol content of high-density lipoprotein particles in the development of diabetes in obesity. We prioritize 17 genes from the discordant signature that convey protection against type 2 diabetes in obesity, which may represent logical targets for precision medicine approaches.
  •  
4.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
5.
  • Gudmundsdottir, Valborg, et al. (författare)
  • Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
  • 2020
  • Ingår i: Genome Medicine. - : BioMed Central. - 1756-994X .- 1756-994X. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling.Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
  •  
6.
  • Mahajan, Anubha, et al. (författare)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
7.
  • Mutie, Pascal M, et al. (författare)
  • Investigating the causal relationships between excess adiposity and cardiometabolic health in men and women
  • 2023
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 66:2, s. 321-335
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Excess adiposity is differentially associated with increased risk of cardiometabolic disease in men and women, according to observational studies. Causal inference studies largely assume a linear relationship between BMI and cardiometabolic outcomes, which may not be the case. In this study, we investigated the shapes of the causal relationships between BMI and cardiometabolic diseases and risk factors. We further investigated sex differences within the causal framework.METHODS: To assess causal relationships between BMI and the outcomes, we used two-stage least-squares Mendelian randomisation (MR), with a polygenic risk score for BMI as the instrumental variable. To elucidate the shapes of the causal relationships, we used a non-linear MR fractional polynomial method, and used piecewise MR to investigate threshold relationships and confirm the shapes.RESULTS: BMI was associated with type 2 diabetes (OR 3.10; 95% CI 2.73, 3.53), hypertension (OR 1.53; 95% CI 1.44, 1.62) and coronary artery disease (OR 1.20; 95% CI 1.08, 1.33), but not chronic kidney disease (OR 1.08; 95% CI 0.67, 1.72) or stroke (OR 1.08; 95% CI 0.92, 1.28). The data suggest that these relationships are non-linear. For cardiometabolic risk factors, BMI was positively associated with glucose, HbA1c, triacylglycerol levels and both systolic and diastolic BP. BMI had an inverse causal relationship with total cholesterol, LDL-cholesterol and HDL-cholesterol. The data suggest a non-linear causal relationship between BMI and BP and other biomarkers (p<0.001) except lipoprotein A. The piecewise MR results were consistent with the fractional polynomial results. The causal effect of BMI on coronary artery disease, total cholesterol and LDL-cholesterol was different in men and women, but this sex difference was only significant for LDL-cholesterol after controlling for multiple testing (p<0.001). Further, the causal effect of BMI on coronary artery disease varied by menopause status in women.CONCLUSIONS/INTERPRETATION: We describe the shapes of causal effects of BMI on cardiometabolic diseases and risk factors, and report sex differences in the causal effects of BMI on LDL-cholesterol. We found evidence of non-linearity in the causal effect of BMI on diseases and risk factor biomarkers. Reducing excess adiposity is highly beneficial for health, but there is greater need to consider biological sex in the management of adiposity.
  •  
8.
  • Tsereteli, Neli, et al. (författare)
  • Impact of insufficient sleep on dysregulated blood glucose control under standardised meal conditions
  • 2022
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 65:2, s. 356-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Sleep, diet and exercise are fundamental to metabolic homeostasis. In this secondary analysis of a repeated measures, nutritional intervention study, we tested whether an individual’s sleep quality, duration and timing impact glycaemic response to a breakfast meal the following morning. Methods: Healthy adults’ data (N = 953 [41% twins]) were analysed from the PREDICT dietary intervention trial. Participants consumed isoenergetic standardised meals over 2 weeks in the clinic and at home. Actigraphy was used to assess sleep variables (duration, efficiency, timing) and continuous glucose monitors were used to measure glycaemic variation (>8000 meals). Results: Sleep variables were significantly associated with postprandial glycaemic control (2 h incremental AUC), at both between- and within-person levels. Sleep period time interacted with meal type, with a smaller effect of poor sleep on postprandial blood glucose levels when high-carbohydrate (low fat/protein) (pinteraction = 0.02) and high-fat (pinteraction = 0.03) breakfasts were consumed compared with a reference 75 g OGTT. Within-person sleep period time had a similar interaction (high carbohydrate: pinteraction = 0.001, high fat: pinteraction = 0.02). Within- and between-person sleep efficiency were significantly associated with lower postprandial blood glucose levels irrespective of meal type (both p < 0.03). Later sleep midpoint (time deviation from midnight) was found to be significantly associated with higher postprandial glucose, in both between-person and within-person comparisons (p = 0.035 and p = 0.051, respectively). Conclusions/interpretation: Poor sleep efficiency and later bedtime routines are associated with more pronounced postprandial glycaemic responses to breakfast the following morning. A person’s deviation from their usual sleep pattern was also associated with poorer postprandial glycaemic control. These findings underscore sleep as a modifiable, non-pharmacological therapeutic target for the optimal regulation of human metabolic health. Trial registrationClinicalTrials.gov NCT03479866. Graphical abstract: [Figure not available: see fulltext.]
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
annan publikation (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Tajes, Juan Fernande ... (5)
Laakso, Markku (4)
McCarthy, Mark I (4)
Pedersen, Oluf (4)
Hansen, Torben (4)
visa fler...
Hattersley, Andrew T (4)
Mahajan, Anubha (4)
Giordano, Giuseppe N ... (3)
Atabaki-Pasdar, Naei ... (3)
Boeing, Heiner (2)
Rolandsson, Olov (2)
Schwenk, Jochen M. (2)
Tuomi, Tiinamaija (2)
Groop, Leif (2)
Salomaa, Veikko (2)
Lind, Lars (2)
Melander, Olle (2)
Deloukas, Panos (2)
Ridderstråle, Martin (2)
Wareham, Nicholas J. (2)
Stancáková, Alena (2)
Kuusisto, Johanna (2)
Isomaa, Bo (2)
Rosengren, Anders (2)
Kravic, Jasmina (2)
Bork-Jensen, Jette (2)
Brandslund, Ivan (2)
Linneberg, Allan (2)
Grarup, Niels (2)
Orho-Melander, Marju (2)
Fitipaldi, Hugo (2)
V Varga, Tibor (2)
Langenberg, Claudia (2)
Boehnke, Michael (2)
Mohlke, Karen L (2)
Scott, Robert A (2)
Jorgensen, Torben (2)
Zhao, Wei (2)
Saleheen, Danish (2)
Mari, Andrea (2)
Tuomilehto, Jaakko (2)
Peters, Annette (2)
Strauch, Konstantin (2)
Vinuela, Ana (2)
Barroso, Ines (2)
De Masi, Federico (2)
Vestergaard, Henrik (2)
Kokkola, Tarja (2)
Heggie, Alison (2)
visa färre...
Lärosäte
Lunds universitet (8)
Umeå universitet (3)
Uppsala universitet (2)
Kungliga Tekniska Högskolan (1)
Karolinska Institutet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy