SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Takahashi A) ;lar1:(slu)"

Search: WFRF:(Takahashi A) > Swedish University of Agricultural Sciences

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Lindberg, A., et al. (author)
  • Cold stress stimulates algae to produce value-added compounds
  • 2022
  • In: Bioresource Technology Reports. - : Elsevier. - 2589-014X. ; 19
  • Journal article (peer-reviewed)abstract
    • Two cold-tolerant microalgae, Chlorella vulgaris and Scenedesmus sp., were grown at 22 and 5 °C. At the lower temperature, the microalgae showed substantial biochemical and morphological changes. The soluble sugar profile in response to low-temperature cultivation was very different in the two strains. C. vulgaris increased both the sucrose and raffinose family oligosaccharides (RFOs) content at 5 °C while Scenedesmus sp. drastically reduced the sucrose content. Both strains increased the total fatty acid methyl ester (FAME) content when grown at 5 °C. However, the FAME profiles were very different: C. vulgaris mainly increased C18:1 and less so C18:3, while Scenedesmus sp. decreased C18:1 but greatly increased C18:3. The morphology of C. vulgaris changed slightly at the lower temperature, while Scenedesmus sp. showed substantial changes in the size and shape. Low temperature triggered the synthesis of unsaturated fatty acids that are essential for human nutrition.
  •  
4.
  • Nishikubo, Nobuyuki, et al. (author)
  • Xyloglucan endo-Transglycosylase-Mediated Xyloglucan Rearrangements in Developing Wood of Hybrid Aspen
  • 2011
  • In: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 155:1, s. 399-413
  • Journal article (peer-reviewed)abstract
    • Xyloglucan endo-transglycosylases (XETs) encoded by xyloglucan endo-transglycosylases/hydrolase (XTH) genes modify the xyloglucan-cellulose framework of plant cell walls, thereby regulating their expansion and strength. To evaluate the importance of XET in wood development, we studied xyloglucan dynamics and XTH gene expression in developing wood and modified XET activity in hybrid aspen (Populus tremula X tremuloides) by overexpressing PtxtXET16-34. We show that developmental modifications during xylem differentiation include changes from loosely to tightly bound forms of xyloglucan and increases in the abundance of fucosylated xyloglucan epitope recognized by the CCRC-M1 antibody. We found that at least 16 Populus XTH genes, all likely encoding XETs, are expressed in developing wood. Five genes were highly and ubiquitously expressed, whereas PtxtXET16-34 was expressed more weakly but specifically in developing wood. Transgenic up-regulation of XET activity induced changes in cell wall xyloglucan, but its effects were dependent on developmental stage. For instance, XET overexpression increased abundance of the CCRC-M1 epitope in cambial cells and xylem cells in early stages of differentiation but not in mature xylem. Correspondingly, an increase in tightly bound xyloglucan content was observed in primary-walled xylem but a decrease was seen in secondary-walled xylem. Thus, in young xylem cells, XET activity limits xyloglucan incorporation into the tightly bound wall network but removes it from cell walls in older cells. XET overexpression promoted vessel element growth but not fiber expansion. We suggest that the amount of nascent xyloglucan relative to XET is an important determinant of whether XET strengthens or loosens the cell wall.
  •  
5.
  • Vaisanen, E., et al. (author)
  • Hunting monolignol transporters: membrane proteomics and biochemical transport assays with membrane vesicles of Norway spruce
  • 2020
  • In: Journal of Experimental Botany. - : Oxford University Press (OUP). - 0022-0957 .- 1460-2431. ; 71:20, s. 6379-6395
  • Journal article (peer-reviewed)abstract
    • Both the mechanisms of monolignol transport and the transported form of monolignols in developing xylem of trees are unknown. We tested the hypothesis of an active, plasma membrane-localized transport of monolignol monomers, dimers, and/or glucosidic forms with membrane vesicles prepared from developing xylem and lignin-forming tissuecultured cells of Norway spruce (Picea abies L. Karst.), as well as from control materials, comprising non-lignifying Norway spruce phloem and tobacco (Nicotiana tabacum L.) BY-2 cells. Xylem and BY-2 vesicles transported both coniferin and p-coumaryl alcohol glucoside, but inhibitor assays suggested that this transport was through the tonoplast. Membrane vesicles prepared from lignin-forming spruce cells showed coniferin transport, but the K-m value for coniferin was much higher than those of xylem and BY-2 cells. Liquid chromatography-mass spectrometry analysis of membrane proteins isolated from spruce developing xylem, phloem, and lignin-forming cultured cells revealed multiple transporters. These were compared with a transporter gene set obtained by a correlation analysis with a selected set of spruce monolignol biosynthesis genes. Biochemical membrane vesicle assays showed no support for ABC-transporter-mediated monolignol transport but point to a role for secondary active transporters (such as MFS or MATE transporters). In contrast, proteomic and co-expression analyses suggested a role for ABC transporters and MFS transporters.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view