SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Takala Jukka S.) "

Sökning: WFRF:(Takala Jukka S.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Haidong, et al. (författare)
  • Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015
  • 2016
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 388:10053, s. 1459-1544
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures.METHODS: We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).FINDINGS: Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4-61·9) in 1980 to 71·8 years (71·5-72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7-17·4), to 62·6 years (56·5-70·2). Total deaths increased by 4·1% (2·6-5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8-18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6-16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9-14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1-44·6), malaria (43·1%, 34·7-51·8), neonatal preterm birth complications (29·8%, 24·8-34·9), and maternal disorders (29·1%, 19·3-37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death.INTERPRETATION: At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems.
  •  
2.
  • Berger, D., et al. (författare)
  • Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return
  • 2016
  • Ingår i: American Journal of Physiology. Heart and Circulatory Physiology. - : American Physiological Society. - 0363-6135 .- 1522-1539. ; 311:3, s. H794-H806
  • Tidskriftsartikel (refereegranskat)abstract
    • According to Guyton’s model of circulation, mean systemic filling pressure (MSFP), right atrial pressure (RAP), and resistance to venous return (RVR) determine venous return. MSFP has been estimated from inspiratory hold-induced changes in RAP and blood flow. We studied the effect of positive end-expiratory pressure (PEEP) and blood volume on venous return and MSFP in pigs. MSFP was measured by balloon occlusion of the right atrium (MSFPRAO), and the MSFP obtained via extrapolation of pressure-flow relationships with airway occlusion (MSFPinsp_hold) was extrapolated from RAP/pulmonary artery flow (QPA) relationships during inspiratory holds at PEEP 5 and 10 cmH2O, after bleeding, and in hypervolemia. MSFPRAO increased with PEEP [PEEP 5, 12.9 (SD 2.5) mmHg; PEEP 10, 14.0 (SD 2.6) mmHg, P = 0.002] without change in QPA [2.75 (SD 0.43) vs. 2.56 (SD 0.45) l/min, P = 0.094]. MSFPRAO decreased after bleeding and increased in hypervolemia [10.8 (SD 2.2) and 16.4 (SD 3.0) mmHg, respectively, P < 0.001], with parallel changes in QPA. Neither PEEP nor volume state altered RVR (P = 0.489). MSFPinsp_hold overestimated MSFPRAO [16.5 (SD 5.8) vs. 13.6 (SD 3.2) mmHg, P = 0.001; mean difference 3.0 (SD 5.1) mmHg]. Inspiratory holds shifted the RAP/QPA relationship rightward in euvolemia because inferior vena cava flow (QIVC) recovered early after an inspiratory hold nadir. The QIVC nadir was lowest after bleeding [36% (SD 24%) of preinspiratory hold at 15 cmH2O inspiratory pressure], and the QIVC recovery was most complete at the lowest inspiratory pressures independent of volume state [range from 80% (SD 7%) after bleeding to 103% (SD 8%) at PEEP 10 cmH2O of QIVC before inspiratory hold]. The QIVC recovery thus defends venous return, possibly via hepatosplanchnic vascular waterfall. © 2016 the American Physiological Society.
  •  
3.
  • Brander, Lukas, et al. (författare)
  • Neural control of ventilation prevents both over-distension and de-recruitment of experimentally injured lungs
  • 2017
  • Ingår i: Respiratory Physiology & Neurobiology. - : Elsevier BV. - 1569-9048 .- 1878-1519. ; 237, s. 57-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Endogenous pulmonary reflexes may protect the lungs during mechanical ventilation. We aimed to assess integration of continuous neurally adjusted ventilatory assist (cNAVA), delivering assist in proportion to diaphragm's electrical activity during inspiration and expiration, and Hering-Breuer inflation and deflation reflexes on lung recruitment, distension, and aeration before and after acute lung injury (ALI).Methods: In 7 anesthetised rabbits with bilateral pneumothoraces, we identified adequate cNAVA level (cNAVA(AL)) at the plateau in peak ventilator pressure during titration procedures before (healthy lungs with endotracheal tube, [HLETT]) and after ALI (endotracheal tube [ALI(ETT)] and during non-invasive ventilation [ALI(NIV)]). Following titration, cNAVA(AL) was maintained for 5 min. In 2 rabbits, procedures were repeated after vagotomy (ALI(ETT+VAG)). In 3 rabbits delivery of assist was temporarily modulated to provide assist on inspiration only. Computed tomography was performed before intubation, before ALI, during cNAVA titration, and after maintenance at cNAVA(AL).Results: During ALI(ETT) and ALI(NIV), normally aerated lung-regions doubled and poorly aerated lung-regions decreased to less than a third (p < 0.05) compared to HLETT; no over-distension was observed. Tidal volumes were <5 ml/kg throughout. Removing assist during expiration resulted in lung de-recruitment during ALI(ETT) but not during ALI(NIV). During ALI(ETT+VAG) the expiratory portion of EAdi disappeared, resulting in cyclic lung collapse and recruitment.Conclusions: When using cNAVA in ALI, vagally mediated reflexes regulated lung recruitment preventing both lung over-distension and atelectasis. During non-invasive cNAVA the upper airway muscles play a role in preventing atelectasis. Future studies should be performed to compare these findings with conventional lung-protective approaches.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy