1. |
- Akiyama, Eiji, et al.
(författare)
-
SPIRAL STRUCTURE AND DIFFERENTIAL DUST SIZE DISTRIBUTION IN THE LkH alpha 330 DISK
- 2016
-
Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 152:6
-
Tidskriftsartikel (refereegranskat)abstract
- Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 mu m) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH alpha 330. As a. result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure. and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and 1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7(-0.4)(+0.5), indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.
|
|
2. |
- de Leon, Jerome, et al.
(författare)
-
NEAR-IR HIGH-RESOLUTION IMAGING POLARIMETRY OF THE SU Aur DISK : CLUES FOR TIDAL TAILS?
- 2015
-
Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 806:1
-
Tidskriftsartikel (refereegranskat)abstract
- We present new high-resolution (similar to 0.09) H-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0.15 (similar to 20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of similar to 90 AU, an inclination of similar to 35 degrees from the plane of the sky, and an approximate PA of 15 degrees for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2.5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1. (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.
|
|
3. |
- Follette, Katherine B., et al.
(författare)
-
SEEDS ADAPTIVE OPTICS IMAGING OF THE ASYMMETRIC TRANSITION DISK OPH IRS 48 IN SCATTERED LIGHT
- 2015
-
Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 798:2
-
Tidskriftsartikel (refereegranskat)abstract
- We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a similar to 60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 mu m IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 +/- 1 and measure a low mass accretion rate of 10(-8.5) M-circle dot yr(-1), both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.
|
|
4. |
- Konishi, Mihoko, et al.
(författare)
-
A substellar companion to Pleiades HII 3441
- 2016
-
Ingår i: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 68:6
-
Tidskriftsartikel (refereegranskat)abstract
- We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0.'' 49 +/- 0.'' 02 (66 +/- 2 au) and a mass of 68 +/- 5 M-J based on three observations in the J-, H-, and K-s-bands. The spectral type is estimated to be M7 (similar to 2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0(-8.8)(+26.1)%. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters.
|
|
5. |
- Kooistra, Robin, et al.
(författare)
-
Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255
- 2017
-
Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597
-
Tidskriftsartikel (refereegranskat)abstract
- We present H-band (1.6 mu m) scattered light observations of the transitional disk RX J1615.3-3255, located in the similar to 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 mu m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with di ff erent dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.
|
|
6. |
- Lomax, Jamie R., et al.
(författare)
-
CONSTRAINING THE MOVEMENT OF THE SPIRAL FEATURES AND THE LOCATIONS OF PLANETARY BODIES WITHIN THE AB AUR SYSTEM
- 2016
-
Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 828:1
-
Tidskriftsartikel (refereegranskat)abstract
- We present a new analysis of multi-epoch, H-band, scattered light images of the AB Aur system. We use a Monte Carlo radiative transfer code to simultaneously model the system's spectral energy distribution (SED) and H-band polarized intensity (PI) imagery. We find that a disk-dominated model, as opposed to one that is envelope-dominated, can plausibly reproduce AB Aur's SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aur's spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H-band total light and PI imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8-year baseline. If such structures are caused by disk-planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 au.
|
|
7. |
- Mayama, Satoshi, et al.
(författare)
-
Subaru Near-infrared Imaging Polarimetry of Misaligned Disks around the SR 24 Hierarchical Triple System
- 2020
-
Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 159:1
-
Tidskriftsartikel (refereegranskat)abstract
- The SR 24 multistar system hosts both circumprimary and circumsecondary disks, which are strongly misaligned with each other. The circumsecondary disk is circumbinary in nature. Interestingly, both disks are interacting, and they possibly rotate in opposite directions. To investigate the nature of this unique twin disk system, we present 01 resolution near-infrared polarized intensity images of the circumstellar structures around SR 24, obtained with HiCIAO mounted on the Subaru 8.2 m telescope. Both the circumprimary disk and the circumsecondary disk are resolved and have elongated features. While the position angle of the major axis and radius of the near-IR (NIR) polarization disk around SR 24S are 55° and 137 au, respectively, those around SR 24N are 110° and 34 au, respectively. With regard to overall morphology, the circumprimary disk around SR 24S shows strong asymmetry, whereas the circumsecondary disk around SR 24N shows relatively strong symmetry. Our NIR observations confirm the previous claim that the circumprimary and circumsecondary disks are misaligned from each other. Both the circumprimary and circumsecondary disks show similar structures in 12CO observations in terms of its size and elongation direction. This consistency is because both NIR and 12CO are tracing surface layers of the flared disks. As the radius of the polarization disk around SR 24N is roughly consistent with the size of the outer Roche lobe, it is natural to interpret the polarization disk around SR 24N as a circumbinary disk surrounding the SR 24Nb–Nc system.
|
|
8. |
- Momose, Munetake, et al.
(författare)
-
Detailed structure of the outer disk around HD169142 with polarized light in H-band
- 2015
-
Ingår i: Nippon Tenmon Gakkai obun kenkyu hokoku. - : Oxford University Press (OUP). - 0004-6264. ; 67:5
-
Tidskriftsartikel (refereegranskat)abstract
- Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.2 <= r <= 1.2, or 29 <= r <= 174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r=29-52 AU and r=81.2-145 AU respectively show r(-3)-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r=40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r<50 AU) is derived to be >= 0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.
|
|
9. |
- Ohta, Yurina, et al.
(författare)
-
Extreme asymmetry in the polarized disk of V1247 Orionis
- 2016
-
Ingår i: Nippon Tenmon Gakkai obun kenkyu hokoku. - : Oxford University Press (OUP). - 0004-6264. ; 68:4
-
Tidskriftsartikel (refereegranskat)abstract
- We present the first near-infrared scattered-light detection of the transitional disk around V1247 Ori, which was obtained using high-resolution polarimetric differential imaging observations with Subaru/HiCIAO. Our imaging in the H band reveals the disk morphology at separations of similar to 0.'' 14-0.'' 86 (54-330 au) from the central star. The polarized intensity image shows a remarkable arc-like structure toward the southeast of the star, whereas the fainter northwest region does not exhibit any notable features. The shape of the arm is consistent with an arc of 0.'' 28 +/- 0.'' 09 in radius (108 au from the star), although the possibility of a spiral arm with a small pitch angle cannot be excluded. V1247 Ori features an exceptionally large azimuthal contrast in scattered, polarized light; the radial peak of the southeastern arc is about three times brighter than the northwestern disk measured at the same distance from the star. Combined with the previous indication of an inhomogeneous density distribution in the gap at less than or similar to 46 au, the notable asymmetry in the outer disk suggests the presence of unseen companions and/or planet-forming processes ongoing in the arc.
|
|
10. |
- Rich, Evan A., et al.
(författare)
-
Multi-epoch Direct Imaging and Time-variable Scattered Light Morphology of the HD 163296 Protoplanetary Disk
- 2019
-
Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 875:1
-
Tidskriftsartikel (refereegranskat)abstract
- We present H-band polarized scattered light imagery and JHK high-contrast spectroscopy of the protoplanetary disk around HD 163296 observed with the High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO) and Subaru Coronagraphic Extreme Adaptive Optics (SCExAO)/Coronagraphic High Angular Resolution Imaging Spectrograph (CHARTS) instruments at Subaru Observatory. The polarimetric imagery resolve a broken ring structure surrounding HD 163296 that peaks at a distance along the major axis of 0 ''.65 (66 au) and extends out to 0 ''.98 (100 au) along the major axis. Our 2011 H-band data exhibit clear axisymmetry, with the NW and SE side of the disk exhibiting similar intensities. Our data are clearly different from 2016 epoch H-band observations of the Very Large Telescope (VLT)/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), which found a strong 2.7 x asymmetry between the NW and SE side of the disk. Collectively, these results indicate the presence of time-variable, non-azimuthally symmetric illumination of the outer disk. While our SCExAO/CHARIS data are sensitive enough to recover the planet candidate identified from NIRC2 in the thermal infrared (IR), we fail to detect an object with JHK brightness nominally consistent with this object. This suggests that the candidate is either fainter in JHK bands than model predictions, possibly due to extinction from the disk or atmospheric dust/clouds, or that it is an artifact of the data set/data processing, such as a residual speckle or partially subtracted disk feature. Assuming standard hot-start evolutionary models and a system age of 5 Myr, we set new, direct mass limits for the inner (outer) Atacama Large Millimeter/submillimeter Array (ALMA)-predicted protoplanet candidate along the major (minor) disk axis of of 1.5 (2) M-J.
|
|