SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tamura Motohide) ;pers:(Kusakabe Nobuhiko)"

Sökning: WFRF:(Tamura Motohide) > Kusakabe Nobuhiko

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akiyama, Eiji, et al. (författare)
  • SPIRAL STRUCTURE AND DIFFERENTIAL DUST SIZE DISTRIBUTION IN THE LkH alpha 330 DISK
  • 2016
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 152:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 mu m) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH alpha 330. As a. result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure. and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and 1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7(-0.4)(+0.5), indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.
  •  
2.
  • Barragán, O., et al. (författare)
  • Radial velocity confirmation of K2-100b: A young, highly irradiated, and low-density transiting hot Neptune
  • 2019
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 490:1, s. 698-708
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 d. We model the activity-induced radial velocity variations of the host star with a multidimensional Gaussian Process framework and detect a planetary signal of 10.6 ± 3.0 m s−1, which matches the transit ephemeris, and translates to a planet mass of 21.8 ± 6.2 M. We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, 2.04+−006661 g cm−3, implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of 1011–1012 g s−1 due to the high level of radiation it receives from its host star.
  •  
3.
  • Currie, Thayne, et al. (författare)
  • RECOVERY OF THE CANDIDATE PROTOPLANET HD 100546 b WITH GEMINI/NICI AND DETECTION OF ADDITIONAL (PLANET-INDUCED ?) DISK STRUCTURE AT SMALL SEPARATIONS
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 796:2, s. L30-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first independent, second epoch (re-) detection of a directly imaged protoplanet candidate. Using L' high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager on Gemini South, we recover HD 100546 b with a position and brightness consistent with the original Very Large Telescope/NAos-COnica detection from Quanz et al., although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to approximate to 12-13 AU in diameter, and is embedded in a finger of thermal IR-bright, polarized emission extending inward to at least 0 ''.3. Standard hot-start models imply a mass of approximate to 15 M-J. However, if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g., 1-7 M-J). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90 degrees. away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to approximate to 0 ''.45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen, wide-separation planet. With one confirmed protoplanet candidate and evidence for one to two others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-Jovian planets at moderate/wide separations like HR 8799.
  •  
4.
  • Follette, Katherine B., et al. (författare)
  • SEEDS ADAPTIVE OPTICS IMAGING OF THE ASYMMETRIC TRANSITION DISK OPH IRS 48 IN SCATTERED LIGHT
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 798:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a similar to 60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 mu m IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 +/- 1 and measure a low mass accretion rate of 10(-8.5) M-circle dot yr(-1), both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.
  •  
5.
  • Fukui, Akihiko, et al. (författare)
  • TOI-2285b: A 1.7 Earth-radius planet near the habitable zone around a nearby M dwarf
  • 2022
  • Ingår i: Publication of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 2053-051X .- 0004-6264. ; 74:1, s. L1-L8
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of TO1-2285b, a sub-Neptune-sized planet transiting a nearby (42 pc) M dwarf with a period of 27.3 d. We identified the transit signal from the Transiting Exoplanet Survey Satellite photometric data, which we confirmed with ground-based photometric observations using the multiband imagers MuSCAT2 and MuSCAT3. Combining these data with other follow-up observations including high-resolution spectroscopy with the Tillinghast Reflector Echelle Spectrograph, high-resolution imaging with the SPeckle Polarimeter, and radial velocity (RV) measurements with the InfraRed Doppler instrument, we find that the planet has a radius of 1.74 +/- 0.08 R-circle plus, a mass of <19.5 M-circle plus + (95% c.I.), and an insolation flux of 1.54 +/- 0.14 times that of the Earth. Although the planet resides just outside the habitable zone for a rocky planet, if the planet harbors an H2O layer under a hydrogen-rich atmosphere, then liquid water could exist on the surface of the H2O layer depending on the planetary mass and water mass fraction. The bright host star in the near-infrared (K-s = 9.0) makes this planet an excellent target for further RV and atmospheric observations to improve our understanding of the composition, formation, and habitability of sub-Neptune-sized planets.
  •  
6.
  • Harakawa, Hiroki, et al. (författare)
  • A super-Earth orbiting near the inner edge of the habitable zone around the M4.5 dwarf Ross 508
  • 2022
  • Ingår i: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 74:4, s. 904-922
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the near-infrared radial velocity (RV) discovery of a super-Earth planet on a 10.77 d orbit around the M4.5 dwarf Ross 508 (Jmag = 9.1). Using precision RVs from the Subaru Telescope IRD (InfraRed Doppler) instrument, we derive a semi-amplitude of 3.92ms−1⁠, corresponding to a planet with a minimum mass msini=4.00M⊕⁠. We find no evidence of significant signals at the detected period in spectroscopic stellar activity indicators or MEarth photometry. The planet, Ross 508 b, has a semi-major axis of 0.05366au. This gives an orbit-averaged insolation of ≈1.4 times the Earth’s value, placing Ross 508 b near the inner edge of its star’s habitable zone. We have explored the possibility that the planet has a high eccentricity and its host is accompanied by an additional unconfirmed companion on a wide orbit. Our discovery demonstrates that the near-infrared RV search can play a crucial role in finding a low-mass planet around cool M dwarfs like Ross 508.
  •  
7.
  • Johnson, M.C., et al. (författare)
  • K2-260 b: A hot Jupiter transiting an F star, and K2-261 b: A warm Saturn around a bright G star
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 481:1, s. 596-612
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and confirmation of two new transiting giant planets from the Kepler extended mission K2. K2-260 b is a hot Jupiter transiting a V = 12.7 F6V star in K2 Field 13, with a mass and radius of M = 1.39-0.06+0.05M⊙and R = 1.69 ± 0.03 R. The planet has an orbital period of P = 2.627 d, and a mass and radius of MP= 1.42-0.32+0.31MJand RP= 1.552-0.057+0.048RJ. This is the first K2 hot Jupiter with a detected secondary eclipse in the Kepler bandpass, with a depth of 71 ± 15 ppm, which we use to estimate a geometric albedo of Ag~ 0.2. We also detected a candidate stellar companion at 0.6 arcsec from K2-260; we find that it is very likely physically associated with the system, in which case it would be an M5-6V star at a projected separation of ~400 au. K2-261 b is a warm Saturn transiting a bright (V = 10.5) G7IV/V star in K2 Field 14. The host star is a metal rich ([Fe/H] = 0.36 ± 0.06), mildly evolved 1.10-0.02+0.01M⊙star with R = 1.65 ± 0.04 R. Thanks to its location near the main-sequence turn-off, we can measure a relatively precise age of 8.8-0.3+0.4Gyr. The planet has P = 11.633 d, MP= 0.223 ± 0.031 MJ, and RP= 0.850-0.022+0.026RJ, and its orbit is eccentric (e = 0.39 ± 0.15). Its brightness and relatively large transit depth make this one of the best-known warm Saturns for follow-up observations to further characterize the planetary system.
  •  
8.
  • Konishi, Mihoko, et al. (författare)
  • A substellar companion to Pleiades HII 3441
  • 2016
  • Ingår i: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 68:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0.'' 49 +/- 0.'' 02 (66 +/- 2 au) and a mass of 68 +/- 5 M-J based on three observations in the J-, H-, and K-s-bands. The spectral type is estimated to be M7 (similar to 2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0(-8.8)(+26.1)%. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters.
  •  
9.
  • Kooistra, Robin, et al. (författare)
  • Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597
  • Tidskriftsartikel (refereegranskat)abstract
    • We present H-band (1.6 mu m) scattered light observations of the transitional disk RX J1615.3-3255, located in the similar to 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 mu m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with di ff erent dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.
  •  
10.
  • Lomax, Jamie R., et al. (författare)
  • CONSTRAINING THE MOVEMENT OF THE SPIRAL FEATURES AND THE LOCATIONS OF PLANETARY BODIES WITHIN THE AB AUR SYSTEM
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 828:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a new analysis of multi-epoch, H-band, scattered light images of the AB Aur system. We use a Monte Carlo radiative transfer code to simultaneously model the system's spectral energy distribution (SED) and H-band polarized intensity (PI) imagery. We find that a disk-dominated model, as opposed to one that is envelope-dominated, can plausibly reproduce AB Aur's SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aur's spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H-band total light and PI imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8-year baseline. If such structures are caused by disk-planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 au.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy