SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tartaglia Leonardo) srt2:(2018);hsvcat:1"

Sökning: WFRF:(Tartaglia Leonardo) > (2018) > Naturvetenskap

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hosseinzadeh, Griffin, et al. (författare)
  • Short-lived Circumstellar Interaction in the Low-luminosity Type IIP SN 2016bkv
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 861:1
  • Tidskriftsartikel (refereegranskat)abstract
    • While interaction with circumstellar material is known to play an important role in Type. IIn supernovae (SNe), analyses of the more common SNe IIP and IIL have not traditionally included interaction as a significant power source. However, recent campaigns to observe SNe within days of explosion have revealed narrow emission lines of high-ionization species in the earliest spectra of luminous SNe II of all subclasses. These flash ionization features indicate the presence of a confined shell of material around the progenitor star. Here we present the first low-luminosity (LL) SN to show flash ionization features, SN 2016bkv. This SN peaked at M-V = -16 mag and has Ha expansion velocities under 1350 km s(-1) around maximum light, placing it at the faint/slow end of the distribution of SNe IIP (similar to SN 2005cs). The light-curve shape of SN 2016bkv is also extreme among SNe IIP. A very strong initial peak could indicate additional luminosity from circumstellar interaction. A very small fall from the plateau to the nickel tail indicates unusually large production of radioactive nickel compared to other LL SNe IIP. A comparison between nebular spectra of SN. 2016bkv and models raises the possibility that SN. 2016bkv is an electron-capture supernova.
  •  
2.
  • Bose, Subhash, et al. (författare)
  • ASASSN-15nx : A Luminous Type II Supernova with a Perfect Linear Decline
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 862:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a luminous Type II supernova, ASASSN-15nx, with a peak luminosity of M-v = -20 mag that is between those of typical core-collapse supernovae and super-luminous supernovae. The post-peak optical light curves show a long, linear decline with a steep slope of 2.5 mag (100 day)(-1) (i.e., an exponential decline in flux) through the end of observations at phase approximate to 260 day. In contrast, the light curves of hydrogen-rich supernovae (SNe II-P/L) always show breaks in their light curves at phase similar to 100 day, before settling onto Co-56 radioactive decay tails with a decline rate of about 1 mag (100 day)(-1). The spectra of ASASSN-15nx do not exhibit the narrow emission-line features characteristic of Type IIn SNe, which can have a wide variety of light-curve shapes usually attributed to strong interactions with a dense circumstellar medium (CSM). ASASSN-15nx has a number of spectroscopic peculiarities, including a relatively weak and triangular-shaped H alpha emission profile with no absorption component. The physical origin of these peculiarities is unclear, but the long and linear post-peak light curve without a break suggests a single dominant powering mechanism. Decay of a large amount of Ni-56 (M-Ni = 1.6 +/- 0.2 M-circle dot) can power the light curve of ASASSN-15nx, and the steep light-curve slope requires substantial gamma-ray escape from the ejecta, which is possible given a low-mass hydrogen envelope for the progenitor. Another possibility is strong CSM interactions powering the light curve, but the CSM needs to be sculpted to produce the unique light-curve shape and avoid producing SN IIn-like narrow emission lines.
  •  
3.
  • Dastidar, Raya, et al. (författare)
  • SN 2015ba : a Type IIP supernova with a long plateau
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 479:2, s. 2421-2442
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical photometry and spectroscopy from about a week after explosion to similar to 272 d of an atypical Type IIP supernova, SN 2015ba, which exploded in the edge-on galaxy IC 1029. SN 2015ba is a luminous event with an absolute V-band magnitude of -17.1 +/- 0.2 mag at 50 d since explosion and has a long plateau lasting for similar to 123 d. The distance to the SN is estimated to be 34.8 +/- 0.7 Mpc using the expanding photosphere and standard candle methods. High-velocity H Balmer components constant with time are observed in the late-plateau phase spectra of SN 2015ba, which suggests a possible role of circumstellar interaction at these phases. Both hydrodynamical and analytical modelling suggest a massive progenitor of SN 2015ba with a pre-explosion mass of 24-26 M-circle dot. However, the nebular spectra of SN 2015ba exhibit insignificant levels of oxygen, which is otherwise expected from a massive progenitor. This might be suggestive of the non-monotonical link between O-core masses and the zero-age main sequence mass of pre-supernova stars and/or uncertainties in the mixing scenario in the ejecta of supernovae.
  •  
4.
  • Prentice, S. J., et al. (författare)
  • SN 2016coi/ASASSN-16fp : an example of residual helium in a type Ic supernova?
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 478:3, s. 4162-4192
  • Tidskriftsartikel (refereegranskat)abstract
    • The optical observations of Ic-4 supernova (SN) 2016coi/ASASSN-16fp, from similar to 2 to similar to 450 d after explosion, are presented along with analysis of its physical properties. The SN shows the broad lines associated with SNe Ic-3/4 but with a key difference. The early spectra display a strong absorption feature at similar to 5400 angstrom which is not seen in other SNe Ic-3/4 at this epoch. This feature has been attributed to He I in the literature. Spectral modelling of the SN in the early photospheric phase suggests the presence of residual He in a C/O dominated shell. However, the behaviour of the He I lines is unusual when compared with He-rich SNe, showing relatively low velocities and weakening rather than strengthening over time. The SN is found to rise to peak similar to 16 d after core-collapse reaching a bolometric luminosity of L-p similar to 3 x 10(42) erg s(-1). Spectral models, including the nebular epoch, show that the SN ejected 2.5-4M(circle dot) of material, with similar to 1.5M(circle dot) below 5000 km s(-1), and with a kinetic energy of (4.5-7) x 10(51) erg. The explosion synthesized similar to 0.14M(circle dot) of Ni-56. There are significant uncertainties in E(B - V)(host) and the distance, however, which will affect L-p and M-Ni. SN 2016coi exploded in a host similar to the Large Magellanic Cloud (LMC) and away from star-forming regions. The properties of the SN and the host-galaxy suggest that the progenitor had M-ZAMS of 23-28M(circle dot) and was stripped almost entirely down to its C/O core at explosion.
  •  
5.
  • Sand, D. J., et al. (författare)
  • Nebular Spectroscopy of the Blue Bump Type Ia Supernova 2017cbv
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 863:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present nebular phase optical and near-infrared spectroscopy of the Type Ia supernova (SN) 2017cbv. The early light curves of SN 2017cbv showed a prominent blue bump in the U, B, and g bands lasting for similar to 5 days. One interpretation of the early light curve is that the excess blue light is due to shocking of the SN ejecta against a nondegenerate companion star-a signature of the single degenerate scenario. If this is the correct interpretation, the interaction between the SN ejecta and the companion star could result in significant Ha (or helium) emission at late times, possibly along with other species, depending on the companion star and its orbital separation. A search for Ha emission in our +302 d spectrum yields a nondetection, with a L-H alpha < 8.0 x 10(35) erg s(-1) (given an assumed distance of D = 12.3 Mpc), which we verified by implanting simulated Ha emission into our data. We make a quantitative comparison to models of swept-up material stripped from a nondegenerate companion star and limit the mass of hydrogen that might remain undetected to M-H < 1 x 10(-4) M-circle dot. A similar analysis of helium star related lines yields a M-He < 5 x 10(-4) M-circle dot. Taken at face value, these results argue against a nondegenerate H- or He-rich companion in Roche lobe overflow as the progenitor of SN 2017cbv. Alternatively, there could be weaknesses in the envelope-stripping and radiative transfer models necessary to interpret the strong H and He flux limits.
  •  
6.
  • Zhang, Kaicheng, et al. (författare)
  • SN 2014J in M82 : new insights on the spectral diversity of Type Ia supernovae
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 481:1, s. 878-893
  • Tidskriftsartikel (refereegranskat)abstract
    • We present extensive spectroscopic observations for one of the closest Type Ia supernovae (SNe Ia), SN 2014J discovered in M82, ranging from 10.4 d before to 473.2 d after B-band maximum light. The diffuse interstellar band features detected in a high-resolution spectrum allow an estimate of line-of-sight extinction as A(v) similar to 1.9 +/- 0.6 mag. Spectroscopically, SN 2014J can be put into the high-velocity (HV) subgroup in Wang's classification with a velocity of Si II lambda 6355 at maximum light of upsilon(0) = 1.22 +/- 0.01 x 10(4) km s(-1) but has a low velocity gradient (LVG, following Benetti's classification) of (v) over bar = 41 +/- 2 km s(-1) d(-1), which is inconsistent with the trend that HV SNe Ia generally have larger velocity gradients. We find that the HV SNe Ia with LVGs tend to have relatively stronger Si III (at similar to 4400 angstrom) absorptions in early spectra, larger ratios of S II lambda 5468 to S II lambda 5640, and weaker Si II 5972 absorptions compared to their counterparts with similar velocities but high velocity gradients. This shows that the HV+ LVG subgroup of SNe Ia may have intrinsically higher photospheric temperature, which indicates that their progenitors may experience more complete burning in the explosions relative to the typical HV SNe Ia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy