SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thierens Hubert) ;hsvcat:2"

Sökning: WFRF:(Thierens Hubert) > Teknik

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ainsbury, Elizabeth A., et al. (författare)
  • Uncertainty of fast biological radiation dose assessment for emergency response scenarios
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 127-135
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. Materials and methods: Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. Results: The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. Conclusions: Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.
  •  
2.
  • Depuydt, Julie, et al. (författare)
  • RENEB intercomparison exercises analyzing micronuclei (Cytokinesis-block Micronucleus Assay)
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 36-47
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: In the framework of the 'Realizing the European Network of Biodosimetry' (RENEB) project, two intercomparison exercises were conducted to assess the suitability of an optimized version of the cytokinesis-block micronucleus assay, and to evaluate the capacity of a large laboratory network performing biodosimetry for radiation emergency triages. Twelve European institutions participated in the first exercise, and four non-RENEB labs were added in the second one. Materials and methods: Irradiated blood samples were shipped to participating labs, whose task was to culture these samples and provide a blind dose estimate. Micronucleus analysis was performed by automated, semi-automated and manual procedures. Results: The dose estimates provided by network laboratories were in good agreement with true administered doses. The most accurate estimates were reported for low dose points (<= 0.94 Gy). For higher dose points (>= 2.7 Gy) a larger variation in estimates was observed, though in the second exercise the number of acceptable estimates increased satisfactorily. Higher accuracy was achieved with the semi-automated method. Conclusion: The results of the two exercises performed by our network demonstrate that the micronucleus assay is a useful tool for large-scale radiation emergencies, and can be successfully implemented within a large network of laboratories.
  •  
3.
  • Jaworska, Alicja, et al. (författare)
  • Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project
  • 2015
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 164:1-2, s. 165-169
  • Tidskriftsartikel (refereegranskat)abstract
    • In the event of a large-scale radiological emergency, the triage of individuals according to their degree of exposure forms an important initial step of the accident management. Although clinical signs and symptoms of a serious exposure may be used for radiological triage, they are not necessarily radiation specific and can lead to a false diagnosis. Biodosimetry is a method based on the analysis of radiation-induced changes in cells of the human body or in portable electronic devices and enables the unequivocal identification of exposed people who should receive medical treatment. The MULTIBIODOSE (MBD) consortium developed and validated several biodosimetric assays and adapted and tested them as tools for biological dose assessment in a mass-casualty event. Different biodosimetric assays were validated against the 'gold standard' of biological dosimetry-the dicentric assay. The assays were harmonised in such a way that, in an emergency situation, they can be run in parallel in a network of European laboratories. The aim of this guidance is to give a concise overview of the developed biodosimetric tools as well as how and when they can be used in an emergency situation.
  •  
4.
  • Kulka, Ulrike, et al. (författare)
  • RENEB - Running the European Network of biological dosimetry and physical retrospective dosimetry
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 2-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. Results: The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. Conclusions: RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.
  •  
5.
  • Trompier, Francois, et al. (författare)
  • Investigation of the influence of calibration practices on cytogenetic laboratory performance for dose estimation
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 118-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: In the frame of the QA program of RENEB, an inter-laboratory comparison (ILC) of calibration sources used in biological dosimetry was achieved to investigate the influence of calibration practices and protocols on the results of the dose estimation performance as a first step to harmonization and standardization of dosimetry and irradiation practices in the European biological dosimetry network. Materials and methods: Delivered doses by irradiation facilities used by RENEB partners were determined with EPR/alanine dosimetry system. Dosimeters were irradiated in the same conditions as blood samples. A short survey was also performed to collect the information needed for the data analysis and evaluate the diversity of practices. Results: For most of partners the deviation of delivered dose from the targeted dose remains below 10%. Deviations larger than 10% were observed for five facilities out of 21. Origins of the largest discrepancies were identified. Correction actions were evaluated as satisfactory. The re-evaluation of some ILC results for the fluorescence in situ hybridization (FISH) and premature chromosome condensation (PCC) assays has been performed leading to an improvement of the overall performances. Conclusions: This work has shown the importance of dosimetry in radiobiology studies and the needs of harmonization, standardization in irradiation and dosimetry practices and educational training for biologists using ionizing radiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy