SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thierens Hubert) ;pers:(Ainsbury Elizabeth A.)"

Sökning: WFRF:(Thierens Hubert) > Ainsbury Elizabeth A.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ainsbury, Elizabeth A., et al. (författare)
  • Inter- and intra-laboratory comparison of a multibiodosimetric approach to triage in a simulated, large scale radiation emergency
  • 2014
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 90:2, s. 193-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The European Union's Seventh Framework Programme-funded project 'Multi-disciplinary biodosimetric tools to manage high scale radiological casualties' (MULTIBIODOSE) has developed a multiparametric approach to radiation biodosimetry, with a particular emphasis on triage of large numbers of potentially exposed individuals following accidental exposures. In November 2012, an emergency exercise took place which tested the capabilities of the MULTIBIODOSE project partners. The exercise described here had a dual purpose: Intercomparison of (i) three biodosimetric assays, and (ii) the capabilities of the seven laboratories, with regards to provision of triage status for suspected radiation exposed individuals. Materials and methods: Three biological dosimetry tools - the dicentric, micronucleus and gamma-H2AX (the phosphorylated form of member X of histone H2A, in response to DNA double-strand breaks) foci assays - were tested, in addition to provision of the triage status results (low exposure: <1 Gy; medium exposure: 1-2 Gy; high exposure: >2 Gy) by the MULTIBIODOSE software. The exercise was run in two modes: An initial triage categorisation of samples (based on the first dose estimates for each assay received from each laboratory) followed by collation of the full set of estimated doses (all the results from all modes of each assay carried out by the participating laboratories) calculated using as many modes of operation as possible of the different assays developed during the project. Simulated acute whole body and partial body exposures were included. Results: The results of the initial triage categorisation and the full comparison of assays and methods within and between laboratories are presented here. Conclusions: The data demonstrate that the MULTIBIODOSE approach of applying multiparametric tools to radiation emergencies is valid and effective.
  •  
2.
  • Ainsbury, Elizabeth A., et al. (författare)
  • MULTIBIODOSE RADIATION EMERGENCY TRIAGE CATEGORIZATION SOFTWARE
  • 2014
  • Ingår i: Health Physics. - 0017-9078 .- 1538-5159. ; 107:1, s. 83-89
  • Tidskriftsartikel (refereegranskat)abstract
    • In this note, the authors describe the MULTIBIODOSE software, which has been created as part of the MULTIBIODOSE project. The software enables doses estimated by networks of laboratories, using up to five retrospective (biological and physical) assays, to be combined to give a single estimate of triage category for each individual potentially exposed to ionizing radiation in a large scale radiation accident or incident. The MULTIBIODOSE software has been created in Java. The usage of the software is based on the MULTIBIODOSE Guidance: the program creates a link to a single SQLite database for each incident, and the database is administered by the lead laboratory. The software has been tested with Java runtime environment 6 and 7 on a number of different Windows, Mac, and Linux systems, using data from a recent intercomparison exercise. The Java program MULTIBIODOSE_1.0.jar is freely available to download from http://www.multibiodose.eu/software or by contacting the software administrator: MULTIBIODOSE-software@gmx.com.
  •  
3.
  • Ainsbury, Elizabeth A., et al. (författare)
  • Uncertainty of fast biological radiation dose assessment for emergency response scenarios
  • 2017
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 93:1, s. 127-135
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. Materials and methods: Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. Results: The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. Conclusions: Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.
  •  
4.
  • Jaworska, Alicja, et al. (författare)
  • Operational guidance for radiation emergency response organisations in Europe for using biodosimetric tools developed in EU MULTIBIODOSE project
  • 2015
  • Ingår i: Radiation Protection Dosimetry. - : Oxford University Press (OUP). - 0144-8420 .- 1742-3406. ; 164:1-2, s. 165-169
  • Tidskriftsartikel (refereegranskat)abstract
    • In the event of a large-scale radiological emergency, the triage of individuals according to their degree of exposure forms an important initial step of the accident management. Although clinical signs and symptoms of a serious exposure may be used for radiological triage, they are not necessarily radiation specific and can lead to a false diagnosis. Biodosimetry is a method based on the analysis of radiation-induced changes in cells of the human body or in portable electronic devices and enables the unequivocal identification of exposed people who should receive medical treatment. The MULTIBIODOSE (MBD) consortium developed and validated several biodosimetric assays and adapted and tested them as tools for biological dose assessment in a mass-casualty event. Different biodosimetric assays were validated against the 'gold standard' of biological dosimetry-the dicentric assay. The assays were harmonised in such a way that, in an emergency situation, they can be run in parallel in a network of European laboratories. The aim of this guidance is to give a concise overview of the developed biodosimetric tools as well as how and when they can be used in an emergency situation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy