SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thomas G) ;mspu:(licentiatethesis)"

Sökning: WFRF:(Thomas G) > Licentiatavhandling

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blomfeldt, Thomas, 1982- (författare)
  • Gluten Protein-Based Microcellular Foams and Composites: Development and Functional Properties
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Most common foams are produced from non-renewable resources (e.g., synthetic plastics),with a number of environmental concerns, hence there is a demand for alternative bio-derivedfoam materials. Wheat gluten protein is widely known to have excellent foaming properties(e.g., in bread making) and is a possible alternative resource for making foam products.Gluten foams were produced using a lyophilization process (freeze-drying) and variousgluten/water-based mixtures were studied. Foams with varying properties were obtained bymixing various amounts of wheat gluten with glycerol (plasticizer) and bacterial cellulosefibers (reinforcement). The gluten foams looked like bread with a beige color and few visuallydetectable surface pores. They were generally characterized as having an open cell structurewith a porosity in the range 75-85% and pore sizes ranging between 20 and 73 μm. Differentmechanical properties were obtained by using varying gluten concentrations and the differentadditives. Plasticizing with glycerol lead to increased flexibility of the foams, with the abilityto recover up to 95% after being compressed by 80%. By reinforcing with bacterial cellulosefibers the material became stiffer, with an increased elastic modulus. Confocal lasermicroscopy revealed that the fibers and gluten interacted. Analyzing the protein structure ofthe foams revealed that the different additives resulted in structures with different proteinpatterns. The samples containing glycerol were more polymerized and less extractable in SDS,whereas the fiber containing samples were only polymerized in small regions and easilyextracted in SDS. Generally the gluten foams had low conductivity values, with some valuesbelow 0.05 W/(m K), which was found to be dependant on density and pore structure. Glutenfoams were also shown to be more difficult to ignite when compared to other conventionalfoams. It was further observed that the foams did not drip making it increasingly difficult forthe fire to spread.
  •  
2.
  • Mollén, Christopher, 1987- (författare)
  • On Massive MIMO Base Stations with Low-End Hardware
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Massive MIMO (Multiple-Input Multiple-Output) base stations have proven, both in theory and in practice, to possess many of the qualities that future wireless communication systems will require.  They can provide equally high data rates throughout their coverage area and can concurrently serve multiple low-end handsets without requiring wider spectrum, denser base station deployment or significantly more power than current base stations.  The main challenge of massive MIMO is the immense hardware complexity and cost of the base station—each element in the large antenna array needs to be individually controllable and therefore requires its own radio chain.  To make massive MIMO commercially viable, the base station has to be built from inexpensive simple hardware.  In this thesis, it is investigated how the use of low-end power amplifiers and analog-to-digital converters (ADCs) affects the performance of massive MIMO.  In the study of the signal distortion from low-end amplifiers, it is shown that in-band distortion is negligible in massive MIMO and that out-of-band radiation is the limiting factor that decides what power efficiency the amplifiers can be operated at.  A precoder that produces transmit signals for the downlink with constant envelope in continuous time is presented to allow for highly power efficient low-end amplifiers.  Further, it is found that the out-of-band radiation is isotropic when the channel is frequency selective and when multiple users are served; and that it can be beamformed when the channel is frequency flat and when few users are served.  Since a massive MIMO base station radiates less power than today's base stations, isotropic out-of-band radiation means that low-end hardware with poorer linearity than required today can be used in massive MIMO.  It is also shown that using one-bit ADCs—the simplest and least power-hungry ADCs—at the base station only degrades the signal-to-interference-and-noise ratio of the system by approximately 4 dB when proper power allocation among users is done, which indicates that massive MIMO is resistant against coarse quantization and that low-end ADCs can be used.
  •  
3.
  • Pitarokoilis, Antonios (författare)
  • On the performance of Massive MIMO systems with single carrier transmission and phase noise
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the last decade we have experienced a rapid increase in the demand for high data rates over cellular networks. This increase has been partly satisfied by the introduction of multi-user multiple-input multiple-output (MU-MIMO). In such systems, the base station (BS) is equipped with multiple antennas and the users share the time-frequency resources. However, modern communication systems are highly power inefficient. Further, the increase in demand for higher data rates is expected to accelerate in the years to come due to the popularity of mobile devices like smartphones and tablets. Hence, next generation cellular systems arerequired to exhibit high energy efficiency as well as low power  consumption. Recently, it has been shown that the deployment of a large excess of base station (BS) antennas in comparison to the served users can be a promising candidate to meet these contradictory requirements. These systems are termed as Massive MIMO. When the number of BS antennas grows large, the channels between different users become orthogonal and low complexity transceiver processing exhibits sum-rate performance that is close to optimal. In order to realize the promised gains of Massive MIMO systems, it is required that power efficient and inexpensive components are used. In contemporary cellular systems, multi-carrier transmission is used since it facilitates simple equalization at the receiver side. However, multi-carrier signals exhibit high peak-to-average-power-ratio (PAPR) and require expensive highly linear power amplifiers. Power amplifiers in this regime are also very power inefficient. On the other hand single carrier signals exhibit lower PAPR and are suitable for signal design that is more robust to non-linear power amplifiers. Further, single-carrier signals are less vulnerable to hardware impairments, such as phase noise. In this thesis we study the fundamental limits of Massive MIMO systems in terms of sum-rate performance with single-carrier transmission and phase noise and provide important insight on the design of Massive MIMO under these scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy