SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thomas J) ;lar1:(ltu)"

Sökning: WFRF:(Thomas J) > Luleå tekniska universitet

  • Resultat 1-10 av 68
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abele, H., et al. (författare)
  • Particle physics at the European Spallation Source
  • 2023
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1023, s. 1-84
  • Forskningsöversikt (refereegranskat)abstract
    • Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world’s brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
  •  
2.
  • Sumaila, U. Rashid, et al. (författare)
  • WTO must ban harmful fisheries subsidies
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6567, s. 544-544
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Burgman, A., et al. (författare)
  • The ESSnuSB Design Study: Overview and Future Prospects
  • 2023
  • Ingår i: Universe. - : MDPI. - 2218-1997. ; 9:8
  • Forskningsöversikt (refereegranskat)abstract
    • ESSnuSB is a design study for an experiment to measure the CP violation in the leptonic sector at the second neutrino oscillation maximum using a neutrino beam driven by the uniquely powerful ESS linear accelerator. The reduced impact of systematic errors on sensitivity at the second maximum allows for a very precise measurement of the CP violating parameter. This review describes the fundamental advantages of measurement at the second maximum, the necessary upgrades to the ESS linac in order to produce a neutrino beam, the near and far detector complexes, and the expected physics reach of the proposed ESSnuSB experiment, concluding with the near future developments aimed at the project realization.
  •  
4.
  • Burgman, A., et al. (författare)
  • The European Spallation Source neutrino super-beam conceptual design report
  • 2022
  • Ingår i: The European Physical Journal Special Topics. - : Springer Nature. - 1951-6355 .- 1951-6401. ; 231:21, s. 3779-3955
  • Forskningsöversikt (refereegranskat)abstract
    • A design study, named ESSνSB for European Spallation Source neutrino Super Beam, has been carried out during the years 2018–2022 of how the 5 MW proton linear accelerator of the European Spallation Source under construction in Lund, Sweden, can be used to produce the world’s most intense long-baseline neutrino beam. The high beam intensity will allow for measuring the neutrino oscillations near the second oscillation maximum at which the CP violation signal is close to three times higher than at the first maximum, where other experiments measure. This will enable CP violation discovery in the leptonic sector for a wider range of values of the CP violating phase δCPδCP and, in particular, a higher precision measurement of δCPδCP. The present Conceptual Design Report describes the results of the design study of the required upgrade of the ESS linac, of the accumulator ring used to compress the linac pulses from 2.86 ms to 1.2 μs, and of the target station, where the 5 MW proton beam is used to produce the intense neutrino beam. It also presents the design of the near detector, which is used to monitor the neutrino beam as well as to measure neutrino cross sections, and of the large underground far detector located 360 km from ESS, where the magnitude of the oscillation appearance of νe from νμ is measured. The physics performance of the ESSνSB research facility has been evaluated demonstrating that after 10 years of data-taking, leptonic CP violation can be detected with more than 5 standard deviation significance over 70% of the range of values that the CP violation phase angle δCPδCP can take and that δCPδCP can be measured with a standard error less than 8° irrespective of the measured value of δCPδCP. These results demonstrate the uniquely high physics performance of the proposed ESSνSBESSνSB research facility.
  •  
5.
  • Tinetti, Giovanna, et al. (författare)
  • The science of EChO
  • 2010
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 6:S276, s. 359-370
  • Tidskriftsartikel (refereegranskat)abstract
    • The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life. The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole. EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates. © International Astronomical Union 2011.
  •  
6.
  • Gultepe, Ismail, et al. (författare)
  • A review on ice fog measurements and modeling
  • 2015
  • Ingår i: Atmospheric research. - : Elsevier BV. - 0169-8095 .- 1873-2895. ; 151, s. 2-19
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of weather-related aviation accident occurrence in the northern latitudes is likely 25 times higher than the national rate of Canada. If only cases where reduced visibility was a factor are considered, the average rate of occurrence in the north is about 31 times higher than the Canadian national rate. Ice fog occurs about 25% of the time in the northern latitudes and is an important contributor to low visibility. This suggests that a better understanding of ice fog prediction and detection is required over the northern latitudes. The objectives of this review are the following: 1) to summarize the current knowledge of ice fog microphysics, as inferred from observations and numerical weather prediction (NWP) models, and 2) to describe the remaining challenges associated with measuring ice fog properties, remote sensing microphysical retrievals, and simulating/predicting ice fog within numerical models. Overall, future challenges related to ice fog microphysics and visibility are summarized and current knowledge is emphasized.
  •  
7.
  • Haberle, R. M., et al. (författare)
  • Secular Climate Change on Mars : An Update Using MSL Pressure Data
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by ~20 Pa. Repeated MOC and HiRISE imaging of scarp retreat rates within the SPRC have led to the suggestion that the SPRC is losing mass. Estimates for the loss rate vary between 0. 5 Pa per Mars Decade to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly into the atmosphere, and that the loss is monotonic, the global annual mean surface pressure should have increased between ~1-20 Pa since the Viking mission (19 Mars years ago). Surface pressure measurements by the Phoenix Lander only 2 Mars years ago were found to be consistent with these loss rates. Here we compare surface pressure data from the MSL mission with that from Viking Lander 2 (VL-2) to determine if the trend continues. We use VL-2 because it is at the same elevation as MSL (-4500 m). However, based on the first 100 sols of data there does not appear to be a significant difference between the dynamically adjusted pressures of the two landers. This result implies one of several possibilities: (1) the cap is not losing mass and the difference between the Viking and Phoenix results is due to uncertainties in the measurements; (2) the cap has lost mass between the Viking and Phoenix missions but it has since gone back to the cap or into the regolith; or (3) that our analysis is flawed. The first possibility is real since post-mission analysis of the Phoenix sensor has shown that there is a 3 (±2) Pa offset in the data and there may also be uncertainties in the Viking data. The loss/gain scenario for the cap seems unlikely since scarps continue retreating, and regolith uptake implies something unique about the past several Mars years. That our analysis is flawed is certainly possible owing to the very different environments of the Viking and MSL landers. MSL is at the bottom of a deep crater in the southern tropics (~5°S), whereas VL-2 is at a high latitude (~48°N) in the northern plains. And in spite of the fact that the two landers are at nearly identical elevations, they are in very different thermal environments (e.g., MSL is warm when VL-2 is cold), which can have a significant affect on pressures. For these reasons, our confidence in the comparison will increase as more MSL data become available. We will report the results up through sol 360 at the meeting.
  •  
8.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
9.
  •  
10.
  • Andersson, Erik, et al. (författare)
  • Ambio fit for the 2020s
  • 2022
  • Ingår i: Ambio. - : Springer Nature. - 0044-7447 .- 1654-7209. ; 51:5, s. 1091-1093
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 68
Typ av publikation
tidskriftsartikel (51)
konferensbidrag (12)
forskningsöversikt (4)
rapport (1)
Typ av innehåll
refereegranskat (61)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Łacny, Ł. (5)
Christiansen, P. (3)
Ekelöf, Tord (3)
Stavropoulos, G. (3)
Park, J (3)
Burgman, A. (3)
visa fler...
Efthymiopoulos, I. (3)
Fanourakis, G. (3)
Thomas, J. (3)
Terranova, F. (3)
Bogomilov, M. (3)
Tsenov, R. (3)
Mezzetto, M. (3)
Baussan, E. (3)
Folsom, B. (3)
Bouquerel, E. (3)
Buchan, O. (3)
Cederkall, J. (3)
Marrelli, C. (3)
Eshraqi, M. (3)
Dancila, Dragos (3)
Danared, H. (3)
Dancila, D. (3)
Delahaye, J. P. (3)
Dracos, M. (3)
Farricker, A. (3)
Fernandez-Martinez, ... (3)
Fukuda, T. (3)
Gazis, N. (3)
Gålnander, B. (3)
Geralis, Th. (3)
Ghosh, M. (3)
Gokbulut, G. (3)
Halić, L. (3)
Jenssen, M. (3)
Johansson, R. (3)
Topaksu, A. Kayis (3)
Kildetoft, B. (3)
Kliček, B. (3)
Kozioł, M. (3)
Krhač, K. (3)
Lindroos, M. (3)
Maiano, C. (3)
Martins, C. (3)
Milas, N. (3)
Ohlsson, Tommy, Prof ... (3)
Oglakci, M. (3)
Olvegård, Maja, 1981 ... (3)
Ota, T. (3)
Patrzalek, D. (3)
visa färre...
Lärosäte
Uppsala universitet (9)
Kungliga Tekniska Högskolan (4)
Lunds universitet (4)
Umeå universitet (3)
Stockholms universitet (3)
visa fler...
Mittuniversitetet (3)
Chalmers tekniska högskola (3)
Sveriges Lantbruksuniversitet (2)
Örebro universitet (1)
Linköpings universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (67)
Tyska (1)
Forskningsämne (UKÄ/SCB)
Teknik (38)
Naturvetenskap (26)
Samhällsvetenskap (6)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy