SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Thorand Barbara) ;lar1:(gu)"

Search: WFRF:(Thorand Barbara) > University of Gothenburg

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Berndt, Sonja I., et al. (author)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • Journal article (peer-reviewed)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
2.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
3.
  • Shungin, Dmitry, et al. (author)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Journal article (peer-reviewed)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
4.
  • Hageman, Steven H. J., et al. (author)
  • Prediction of individual lifetime cardiovascular risk and potential treatment benefit: development and recalibration of the LIFE-CVD2 model to four European risk regions
  • 2024
  • In: EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY. - 2047-4873 .- 2047-4881.
  • Journal article (peer-reviewed)abstract
    • Aims The 2021 European Society of Cardiology prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding initiation of prevention. We aimed to update and systematically recalibrate the LIFEtime-perspective CardioVascular Disease (LIFE-CVD) model to four European risk regions for the estimation of lifetime CVD risk for apparently healthy individuals.Methods and results The updated LIFE-CVD (i.e. LIFE-CVD2) models were derived using individual participant data from 44 cohorts in 13 countries (687 135 individuals without established CVD, 30 939 CVD events in median 10.7 years of follow-up). LIFE-CVD2 uses sex-specific functions to estimate the lifetime risk of fatal and non-fatal CVD events with adjustment for the competing risk of non-CVD death and is systematically recalibrated to four distinct European risk regions. The updated models showed good discrimination in external validation among 1 657 707 individuals (61 311 CVD events) from eight additional European cohorts in seven countries, with a pooled C-index of 0.795 (95% confidence interval 0.767-0.822). Predicted and observed CVD event risks were well calibrated in population-wide electronic health records data in the UK (Clinical Practice Research Datalink) and the Netherlands (Extramural LUMC Academic Network). When using LIFE-CVD2 to estimate potential gain in CVD-free life expectancy from preventive therapy, projections varied by risk region reflecting important regional differences in absolute lifetime risk. For example, a 50-year-old smoking woman with a systolic blood pressure (SBP) of 140 mmHg was estimated to gain 0.9 years in the low-risk region vs. 1.6 years in the very high-risk region from lifelong 10 mmHg SBP reduction. The benefit of smoking cessation for this individual ranged from 3.6 years in the low-risk region to 4.8 years in the very high-risk region.Conclusion By taking into account geographical differences in CVD incidence using contemporary representative data sources, the recalibrated LIFE-CVD2 model provides a more accurate tool for the prediction of lifetime risk and CVD-free life expectancy for individuals without previous CVD, facilitating shared decision-making for cardiovascular prevention as recommended by 2021 European guidelines. The study introduces LIFE-CVD2, a new tool that helps predict the risk of heart disease over a person's lifetime, and highlights how where you live in Europe can affect this risk. Using health information from over 687 000 people, LIFE-CVD2 looks at things like blood pressure and whether someone smokes to figure out their chance of having heart problems later in life. Health information from another 1.6 million people in seven different European countries was used to show that it did a good job of predicting who might develop heart disease.Knowing your heart disease risk over your whole life helps doctors give you the best advice to keep your heart healthy. Let us say there is a 50-year-old woman who smokes and has a bit high blood pressure. Right now, she might not look like she is in danger. But with the LIFE-CVD2 tool, doctors can show her how making changes today, like lowering her blood pressure or stopping smoking, could mean many more years without heart problems. These healthy changes can make a big difference over many years.
  •  
5.
  • Huth, Cornelia, et al. (author)
  • IL6 gene promoter polymorphisms and type 2 diabetes - Joint analysis of individual participants' data from 21 studies
  • 2006
  • In: DIABETES. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:10, s. 2915-2921
  • Journal article (peer-reviewed)abstract
    • Several lines of evidence indicate a causal role of the cytokine interleukin (IL)-6 in the development of type 2 diabetes in humans. Two common polymorphisms in the promoter of the IL-6 encoding gene IL6, −174G&gt;C (rs1800795) and −573G&gt;C (rs1800796), have been investigated for association with type 2 diabetes in numerous studies but with results that have been largely equivocal. To clarify the relationship between the two IL6 variants and type 2 diabetes, we analyzed individual data on &gt;20,000 participants from 21 published and unpublished studies. Collected data represent eight different countries, making this the largest association analysis for type 2 diabetes reported to date. The GC and CC genotypes of IL6 −174G&gt;C were associated with a decreased risk of type 2 diabetes (odds ratio 0.91, P = 0.037), corresponding to a risk modification of nearly 9%. No evidence for association was found between IL6 −573G&gt;C and type 2 diabetes. The observed association of the IL6 −174 C-allele with a reduced risk of type 2 diabetes provides further evidence for the hypothesis that immune mediators are causally related to type 2 diabetes; however, because the association is borderline significant, additional data are still needed to confirm this finding.
  •  
6.
  • Huth, Cornelia, et al. (author)
  • Joint analysis of individual participants' data from 17 studies on the association of the IL6 variant -174G>C with circulating glucose levels, interleukin-6 levels, and body mass index.
  • 2009
  • In: Annals of medicine. - : Informa UK Limited. - 1365-2060 .- 0785-3890. ; 41:2, s. 128-38
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Several studies have investigated associations between the -174G>C single nucleotide polymorphism (rs1800795) of the IL6 gene and phenotypes related to type 2 diabetes mellitus (T2DM) but presented inconsistent results. AIMS: This joint analysis aimed to clarify whether IL6 -174G>C was associated with glucose and circulating interleukin-6 concentrations as well as body mass index (BMI). METHODS: Individual-level data from all studies of the IL6-T2DM consortium on Caucasian subjects with available BMI were collected. As study-specific estimates did not show heterogeneity (P>0.1), they were combined by using the inverse-variance fixed-effect model. RESULTS: The main analysis included 9440, 7398, 24,117, or 5659 non-diabetic and manifest T2DM subjects for fasting glucose, 2-hour glucose, BMI, or circulating interleukin-6 levels, respectively. IL6 -174 C-allele carriers had significantly lower fasting glucose (-0.091 mmol/L, P=0.014). There was no evidence for association between IL6 -174G>C and BMI or interleukin-6 levels, except in some subgroups. CONCLUSIONS: Our data suggest that C-allele carriers of the IL6 -174G>C polymorphism have lower fasting glucose levels on average, which substantiates previous findings of decreased T2DM risk of these subjects.
  •  
7.
  • Klaric, Lucija, et al. (author)
  • Mendelian randomisation identifies alternative splicing of the FAS death receptor as a mediator of severe COVID-19.
  • 2021
  • In: medRxiv : the preprint server for health sciences. - : Cold Spring Harbor Laboratory. ; , s. 1-28
  • Other publication (other academic/artistic)abstract
    • Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.
  •  
8.
  • Neumann, Johannes Tobias, et al. (author)
  • Prognostic Value of Cardiovascular Biomarkers in the Population.
  • 2024
  • In: JAMA. - : American Medical Association (AMA). - 1538-3598 .- 0098-7484. ; 331:22, s. 1898-1909
  • Journal article (peer-reviewed)abstract
    • Identification of individuals at high risk for atherosclerotic cardiovascular disease within the population is important to inform primary prevention strategies.To evaluate the prognostic value of routinely available cardiovascular biomarkers when added to established risk factors.Individual-level analysis including data on cardiovascular biomarkers from 28 general population-based cohorts from 12 countries and 4 continents with assessments by participant age. The median follow-up was 11.8 years.Measurement of high-sensitivity cardiac troponin I, high-sensitivity cardiac troponin T, N-terminal pro-B-type natriuretic peptide, B-type natriuretic peptide, or high-sensitivity C-reactive protein.The primary outcome was incident atherosclerotic cardiovascular disease, which included all fatal and nonfatal events. The secondary outcomes were all-cause mortality, heart failure, ischemic stroke, and myocardial infarction. Subdistribution hazard ratios (HRs) for the association of biomarkers and outcomes were calculated after adjustment for established risk factors. The additional predictive value of the biomarkers was assessed using the C statistic and reclassification analyses.The analyses included 164054 individuals (median age, 53.1 years [IQR, 42.7-62.9 years] and 52.4% were women). There were 17211 incident atherosclerotic cardiovascular disease events. All biomarkers were significantly associated with incident atherosclerotic cardiovascular disease (subdistribution HR per 1-SD change, 1.13 [95% CI, 1.11-1.16] for high-sensitivity cardiac troponin I; 1.18 [95% CI, 1.12-1.23] for high-sensitivity cardiac troponin T; 1.21 [95% CI, 1.18-1.24] for N-terminal pro-B-type natriuretic peptide; 1.14 [95% CI, 1.08-1.22] for B-type natriuretic peptide; and 1.14 [95% CI, 1.12-1.16] for high-sensitivity C-reactive protein) and all secondary outcomes. The addition of each single biomarker to a model that included established risk factors improved the C statistic. For 10-year incident atherosclerotic cardiovascular disease in younger people (aged <65 years), the combination of high-sensitivity cardiac troponin I, N-terminal pro-B-type natriuretic peptide, and high-sensitivity C-reactive protein resulted in a C statistic improvement from 0.812 (95% CI, 0.8021-0.8208) to 0.8194 (95% CI, 0.8089-0.8277). The combination of these biomarkers also improved reclassification compared with the conventional model. Improvements in risk prediction were most pronounced for the secondary outcomes of heart failure and all-cause mortality. The incremental value of biomarkers was greater in people aged 65 years or older vs younger people.Cardiovascular biomarkers were strongly associated with fatal and nonfatal cardiovascular events and mortality. The addition of biomarkers to established risk factors led to only a small improvement in risk prediction metrics for atherosclerotic cardiovascular disease, but was more favorable for heart failure and mortality.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view