SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thorlacius Henrik) ;pers:(Braun Oscar)"

Sökning: WFRF:(Thorlacius Henrik) > Braun Oscar

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Braun, Oscar, et al. (författare)
  • Primary and secondary capture of platelets onto inflamed femoral artery endothelium is dependent on P-selectin and PSGL-1.
  • 2008
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 1879-0712 .- 0014-2999. ; 592, s. 128-132
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelets constitute a key role in vascular injuries, however, the detailed mechanisms behind platelet-endothelial cell and platelet-leukocyte interactions in the femoral artery are not yet fully elucidated. We used intravital fluorescence microscopy of the femoral artery in C57BL/6 mice to study primary and secondary capture of platelets onto endothelial cells as well as onto adherent platelets and leukocytes in vivo. By use of monoclonal antibodies, the role of P-selectin and P-selectin glycoprotein ligand 1 (PSGL-1) in these adhesive interactions in mice exposed to endotoxin was determined. Intravenous injection of endotoxin significantly increased gene expression of P-selectin as well as platelet tethering, rolling and adhesion in the femoral artery. Pretreatment with the anti-PSGL-1 antibody decreased platelet tethering by 85%, platelet rolling by 88% and platelet adhesion by 96%. Immunoneutralization of P-selectin reduced platelet tethering by 91%, platelet rolling by 98%, and platelet adhesion by 97%. In addition, inhibition of P-selectin and PSGL-1 completely abolished secondary capture of platelets onto adherent platelets and leukocytes. Our data show that P-selectin and PSGL-1 mediate early interactions between platelets and other cells, including endothelial cells and leukocytes, in inflamed arteries. These novel results suggest that interference with P-selectin and PSGL-1 may be a useful target in strategies aiming to protect the vascular wall during arterial inflammation.
  •  
2.
  • Muhammad, Asad, et al. (författare)
  • Platelets support pulmonary recruitment of neutrophils in abdominal sepsis
  • 2009
  • Ingår i: Critical Care Medicine. - 1530-0293. ; 37:4, s. 1389-1396
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Recent findings Indicate that platelets not only regulate thrombosis and hemostasis but may also be involved in proinflammatory activities. Herein, we hypothesized that platelets may play a role in sepsis by activating and priming circulating neutrophils for subsequent recruitment Into the lung. Design: Prospective experimental study. Setting. University Hospital Research Unit. Subject. Male C57BL/6 mice. Interventions. Lung edema, bronchoalveolar infiltration of neutrophils, levels of myeloperoxidase, expression and function of membrane-activated complex-1 (Mac-1) on neutrophils and the CXC chemokines, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant were determined after cecal ligation and puncture (CLP). Mice received a platelet-depleting antibody as well as antibodies directed against P-selectin glycoprotein-ligand-1 and Mac-1 before CLP induction. Measurements and Main Results. CLP caused significant pulmonary damage characterized by neutrophil infiltration, increased levels of CXC chemokines, and edema formation in the lung. Furthermore, CLP up-regulated Mac-1 expression on neutrophils and increased the number of neutrophils binding platelets in the circulation. Interestingly, depletion of platelets reduced CLP-induced edema and neutrophil recruitment in the bronchoalveolar space by >60%. Furthermore, depletion of platelets reduced Mac-1 expression on neutrophils. On the other hand, inhibition of P-selectin glycoprotein-ligand-1 abolished CLP-induced neutrophil-platelet aggregation but had no effect on neutrophil expression of Mac-1. Conclusions: These data demonstrate that platelets play a key role in regulating infiltration of neutrophils and edema formation in the lung via upregulation of Mac-1 in abdominal sepsis. (Crit Care Med 2009; 37:1389-1396)
  •  
3.
  • Rahman, Milladur, et al. (författare)
  • Ticagrelor reduces neutrophil recruitment and lung damage in abdominal sepsis.
  • 2014
  • Ingår i: Platelets. - : Informa UK Limited. - 1369-1635 .- 0953-7104. ; 25:4, s. 257-263
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract Platelets play an important role in abdominal sepsis and P2Y12 receptor antagonists have been reported to exert anti-inflammatory effects. Herein, we assessed the impact of platelet inhibition with the P2Y12 receptor antagonist ticagrelor on pulmonary neutrophil recruitment and tissue damage in a model of abdominal sepsis. Wild-type C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Animals were treated with ticagrelor (100 mg/kg) or vehicle prior to CLP induction. Edema formation and bronchoalveolar neutrophils as well as lung damage were quantified. Flow cytometry was used to determine expression of platelet-neutrophil aggregates, neutrophil activation and CD40L expression on platelets. CLP-induced pulmonary infiltration of neutrophils at 24 hours was reduced by 50% in ticagrelor-treated animals. Moreover, ticagrelor abolished CLP-provoked lung edema and decreased lung damage score by 41%. Notably, ticagrelor completely inhibited formation of platelet-neutrophil aggregates and markedly reduced thrombocytopenia in CLP animals. In addition, ticagrelor reduced platelet shedding of CD40L in septic mice. Our data indicate that ticagrelor can reduce CLP-induced pulmonary neutrophil recruitment and lung damage suggesting a potential role for platelet antagonists, such as ticagrelor, in the management of patients with abdominal sepsis.
  •  
4.
  • Slotta, Jan, et al. (författare)
  • Central Role of Rho Kinase in Lipopolysaccharide-Induced Platelet Capture on Venous Endothelium.
  • 2008
  • Ingår i: Journal of Investigative Medicine. - 1708-8267. ; 56:4, s. 720-725
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:: Platelet-endothelial cell interactions play a key role in hemostasis and pathological coagulation and are dependent on different surface molecules that are expressed upon activation (eg, mediated by lipopolysaccharide [LPS]). Recently, we have shown that Rho kinase plays a central role in LPS-mediated leukocyte-endothelial cell interactions. We investigated the role of Rho-kinase in inflammatory interactions between platelets and the endothelium in femoral veins in vivo. METHODS:: Mice were injected intravenously with LPS (0.5 mg/kg)/D-galactosamine (900 mg/kg), and Rho kinase was blocked with fasudil 15 minutes before LPS application. Four hours after LPS administration, intravital fluorescence microscopy of the femoral vein was performed, and primary and secondary platelet-endothelial cell interactions were visualized after in vivo platelet staining with rhodamine 6G. RESULTS:: Intravital microscopy showed a significant increase in platelet tethering, rolling, and firm adhesion as well as platelet secondary capture in LPS-treated mice. Rho-kinase inhibition by fasudil significantly reduced platelet tethering, rolling, and firm adhesion. Interestingly, functional blockade of Rho kinase was also able to diminish secondary platelet capture by 79%. CONCLUSIONS:: From our data, we conclude that Rho-kinase signaling plays a central role in the regulation of LPS-induced platelet-endothelial cell interactions in large veins in vivo. Thus, Rho-kinase inhibition might be useful in prevention or treatment of pathological inflammation and endotoxin-mediated hypercoagulation.
  •  
5.
  •  
6.
  • Wang, Yongzhi, et al. (författare)
  • DYNAMIC CHANGES IN THROMBIN GENERATION IN ABDOMINAL SEPSIS IN MICE.
  • 2014
  • Ingår i: Shock. - 1540-0514. ; 42:4, s. 343-349
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT-Systemic inflammatory response syndrome and severe infections are associated with major derangements in the coagulation system. The purpose of this study was to examine the dynamic alterations in thrombin generation in abdominal sepsis. Abdominal sepsis was induced by cecal ligation and puncture (CLP) in C57/Bl6 mice. CLP caused a systemic inflammatory response with neutrophil recruitment and tissue damage in the lung as well as thrombocytopenia and leukocytopenia. Thrombin generation, coagulation factors, lung histology and myeloperoxidase (MPO) activity was determined 1h, 3h, 6h and 24h after induction of CLP. It was found that thrombin generation was increased 1h after CLP and that thrombin generation started to decrease at 3h and was markedly reduced 6h and 24h after CLP induction. Platelet poor plasma from healthy mice could completely reverse the inhibitory effect of CLP on thrombin generation, suggesting that sepsis caused a decrease in the levels of plasma factors regulating thrombin generation in septic animals. Indeed, it was found that CLP markedly decreased plasma levels of prothrombin, factor V and factor X at 6h and 24h. Moreover, we observed that CLP increased plasma levels of activated protein C at 6h, which returned to baseline levels 24h after CLP induction. Finally, pretreatment with imipenem/cilastatin attenuated the CLP-evoked decrease in thrombin generation and consumption of prothrombin 24h after CLP induction. Our novel findings suggest that thrombin generation is initially increased and later decreased in abdominal sepsis. Sepsis-induced reduction in thrombin generation is correlated to changes in the plasma levels of coagulation factors and activated protein C. These findings help explain the dynamic changes in global hemostasis in abdominal sepsis.
  •  
7.
  • Wang, Yongzhi, et al. (författare)
  • Monocytes regulate systemic coagulation and inflammation in abdominal sepsis.
  • 2015
  • Ingår i: American Journal of Physiology: Heart and Circulatory Physiology. - : American Physiological Society. - 1522-1539 .- 0363-6135. ; 308:5, s. 540-547
  • Tidskriftsartikel (refereegranskat)abstract
    • Abdominal sepsis is associated with significant changes in systemic inflammation and coagulation. The purpose of this study was to examine the role of peripheral blood monocytes for systemic coagulation, including thrombin generation and consumption of coagulation factors. Abdominal sepsis was induced by cecal ligation and puncture (CLP) in C57BL/6 mice. Plasma and lung levels of interleukin-6 (IL-6), CXC chemokines (CXCL1, CXCL2 and CXCL5) as well as pulmonary activity of myeloperoxidase (MPO), thrombin generation and coagulation factors were determined 6h after CLP induction. Administration of clodronate liposomes decreased circulating levels of monocytes by 96%. Time to peak thrombin formation was increased and peak and total thrombin generation was decreased in plasma from CLP animals. Monocyte depletion decreased time to peak formation of thrombin and increased peak and total generation of thrombin in septic animals. In addition, monocyte depletion decreased the CLP-induced increase in the levels of thrombin-antithrombin complexes in plasma. Depletion of monocytes increased plasma levels of prothrombin, factor V, factor X, protein C and in septic mice. Moreover, depletion of monocytes decreased CLP-induced levels of IL-6 and CXC chemokines in plasma and lung by more than 59% and 20%, respectively. CLP-induced MPO activity in the lung was attenuated by 44% in animals depleted of monocytes. Taken together, our findings show for the first time that peripheral blood monocytes regulates systemic coagulation and improve our understanding of the pathophysiology of sepsis and encourage further attempts to target innate immune cell functions in abdominal sepsis.
  •  
8.
  • Wang, Yongzhi, et al. (författare)
  • Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Abdominal sepsis is associated with dysfunctional hemostasis. Thrombin generation (TG) is a rate-limiting step in systemic coagulation. Neutrophils can expell neutrophil extracellular traps (NETs) and/or microparticles (MPs) although their role in pathological coagulation remains elusive. Cecal ligation and puncture (CLP)-induced TG in vivo was reflected by a reduced capacity of plasma from septic animals to generate thrombin. Depletion of neutrophils increased TG in plasma from CLP mice. Sepsis was associated with increased histone 3 citrullination in neutrophils and plasma levels of cell-free DNA and DNA-histone complexes and administration of DNAse not only eliminated NET formation but also elevated TG in sepsis. Isolated NETs increased TG and co-incubation with DNAse abolished NET-induced formation of thrombin. TG triggered by NETs was inhibited by blocking factor XII and abolished in factor XII-deficient plasma but intact in factor VII-deficient plasma. Activation of neutrophils simultaneously generated large amount of neutrophil-derived MPs, which were found to bind to NETs via histone-phosphatidylserine interactions. These findings show for the first time that NETs and MPs physically interact, and that NETs might constitute a functional assembly platform for MPs. We conclude that NET-MP complexes induce TG via the intrinsic pathway of coagulation and that neutrophil-derived MPs play a key role in NET-dependent coagulation.
  •  
9.
  • Wang, Yongzhi, et al. (författare)
  • Platelet-derived microparticles regulates thrombin generation via phophatidylserine in abdominal sepsis
  • 2018
  • Ingår i: Journal of Cellular Physiology. - : Wiley. - 1097-4652 .- 0021-9541. ; 233:2, s. 1051-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis is associated with dysfunctional coagulation. Recent data suggest that platelets play a role in sepsis by promoting neutrophil accumulation. Herein, we show that cecal ligation and puncture (CLP) triggered systemic inflammation, which is characterized by formation of IL-6 and CXC chemokines as well as neutrophil accumulation in the lung. Platelet depletion decreased neutrophil accumulation, IL-6, and CXC chemokines formation in septic lungs. Depletion of platelets increased peak thrombin formation and total thrombin generation (TG) in plasma from septic animals. CLP elevated circulating levels of platelet-derived microparticles (PMPs). In vitro generated PMPs were a potent inducer of TG. Interestingly, in vitro wild-type recombinant annexin V abolished PMP-induced thrombin formation whereas a mutant annexin V protein, which does not bind to phosphatidylserine (PS), had no effect. Administration of wild-type, but not mutant annexin V, significantly inhibited thrombin formation in septic animals. Moreover, CLP-induced formation of thrombin-antithrombin complexes were reduced in platelet-depleted mice and in animals pretreated with annexin V. PMP-induced TG attenuated in FXII- and FVII-deficient plasma. These findings suggest that sepsis-induced TG is dependent on platelets. Moreover, PMPs formed in sepsis are a potent inducer of TG via PS exposure, and activation of both the intrinsic and extrinsic pathway of coagulation. In conclusion, these observations suggest that PMPs and PS play an important role in dysfunctional coagulation in abdominal sepsis.
  •  
10.
  • Wang, Yongzhi, et al. (författare)
  • Rac1 regulates bacterial toxin-induced thrombin generation.
  • 2016
  • Ingår i: Inflammation Research. - : Springer Science and Business Media LLC. - 1420-908X .- 1023-3830.
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammatory response syndrome is associated with severe coagulopathy. The purpose of this study was to examine thrombin generation in systemic inflammation triggered by the endotoxin lipopolysaccharide (LPS) and the exotoxin streptococcal M1 protein.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy