SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thorlacius Henrik) ;pers:(Zhang Su)"

Sökning: WFRF:(Thorlacius Henrik) > Zhang Su

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asaduzzaman, Muhammad, et al. (författare)
  • LFA-1 AND MAC-1 MEDIATE PULMONARY RECRUITMENT OF NEUTROPHILS AND TISSUE DAMAGE IN ABDOMINAL SEPSIS.
  • 2008
  • Ingår i: Shock. - : Ovid Technologies (Wolters Kluwer Health). - 1540-0514 .- 1073-2322. ; 30, s. 254-259
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophil-mediated lung damage is an insidious feature in septic patients, although the adhesive mechanisms behind pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. The aim of the present study was to define the role of lymphocyte function-antigen 1 (LFA-1) and membrane-activated complex 1 (Mac-1) in septic lung injury. Pulmonary edema, bronchoalveolar infiltration of neutrophils, levels of myeloperoxidase, and CXC chemokines were determined after cecal ligation and puncture (CLP). Mice were treated with monoclonal antibodies directed against LFA-1 and Mac-1 before CLP induction. Cecal ligation and puncture induced clear-cut pulmonary damage characterized by edema formation, neutrophil infiltration, and increased levels of CXC chemokines in the lung. Notably, immunoneutralization of LFA-1 or Mac-1 decreased CLP-induced neutrophil recruitment in the bronchoalveolar space by more than 64%. Moreover, functional inhibition of LFA-1 and Mac-1 abolished CLP-induced lung damage and edema. However, formation of CXC chemokines in the lung was intact in mice pretreated with the anti-LFA-1 and anti-Mac-1 antibodies. Our data demonstrate that both LFA-1 and Mac-1 regulate pulmonary infiltration of neutrophils and lung edema associated with abdominal sepsis. Thus, these novel findings suggest that LFA-1 or Mac-1 may serve as targets to protect against lung injury in polymicrobial sepsis.
  •  
2.
  • Awla, Darbaz, et al. (författare)
  • Lymphocyte function antigen-1 regulates neutrophil recruitment and tissue damage in acute pancreatitis.
  • 2011
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 163, s. 413-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose: Leucocyte infiltration is a rate-limiting step in the pathophysiology of acute pancreatitis (AP) although the adhesive mechanisms supporting leucocyte-endothelium interactions in the pancreas remain elusive. The aim of this study was to define the role of lymphocyte function antigen-1 (LFA-1) in regulating neutrophil-endothelium interactions and tissue damage in severe AP. Experimental approach: Pancreatitis was induced by retrograde infusion of sodium taurocholate into the pancreatic duct in mice. LFA-1 gene-targeted mice and an antibody directed against LFA-1 were used to define the role of LFA-1. Key results: Taurocholate challenge caused a clear-cut increase in serum amylase, neutrophil infiltration, CXCL2 (macrophage inflammatory protein-2) formation, trypsinogen activation and tissue damage in the pancreas. Inhibition of LFA-1 function markedly reduced taurocholate-induced amylase levels, accumulation of neutrophils, production of CXC chemokines and tissue damage in the pancreas. Notably, intravital microscopy revealed that inhibition of LFA-1 abolished taurocholate-induced leucocyte adhesion in postcapillray venules of the pancreas. In addition, pulmonary infiltration of neutrophils was attenuated by inhibition of LFA-1 in mice challenged with taurocholate. However, interference with LFA-1 had no effect on taurocholate-induced activation of trypsinogen in the pancreas. Conclusions and Implications: Our novel data suggest that LFA-1 plays a key role in regulating neutrophil recruitment, CXCL2 formation and tissue injury in the pancreas. Moreover, these results suggest that LFA-1-mediated inflammation is a downstream component of trypsinogen activation in the pathophysiology of AP. Thus, we conclude that targeting LFA-1 may be a useful approach to protect against pathological inflammation in the pancreas.
  •  
3.
  •  
4.
  • Changhui, Yu, et al. (författare)
  • Platelet-Derived CCL5 Regulates CXC Chemokine Formation and Neutrophil Recruitment in Acute Experimental Colitis.
  • 2016
  • Ingår i: Journal of Cellular Physiology. - : Wiley. - 1097-4652 .- 0021-9541. ; 231:2, s. 370-376
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4 although their role in acute colitis remains elusive. The aim of this study was to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis was induced in female Balb/c mice by administration of 5% dextran sodium sulphate (DSS) for five days. Animals received a platelet-depleting, anti-CCL5, anti-CXCL4 or a control antibody prior to DSS challenge. Colonic tissue was collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6) and CCL5 levels as well as morphological analyses. Platelet depletion reduced tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduced levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduced tissue damage, CXC chemokine expression and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis. This article is protected by copyright. All rights reserved.
  •  
5.
  • Changhui, Yu, et al. (författare)
  • Rac1 signaling regulates neutrophil-dependent tissue damage in experimental colitis.
  • 2014
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 1879-0712 .- 0014-2999. ; 741:Jul 30, s. 90-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive neutrophil recruitment in the colon is a major feature in acute colitis although the signaling mechanisms behind colonic recruitment of neutrophils remain elusive. Herein, we hypothesized that Rac1 activity might play an important role in neutrophil infiltration in the inflamed colon. Female Balb/c mice were treated with the Rac1 inhibitor NSC23766 (0.5 and 5mg/kg) before and daily after administration of 5% dextran sodium sulfate (DSS). Colonic tissue was collected for quantification of neutrophil recruitment, interleukin-6 (IL-6) and CXC chemokine formation as well as histological damage score five days after challenge with DSS. Rac1 activity was determined by western blot and Mac-1 expression by flow cytometry in neutrophils. Administration of NSC23766 decreased DSS-induced neutrophil recruitment and tissue damage in the colon. Rac1 inhibition decreased colonic formation of IL-6 and CXC chemokines in experimental colitis. Chemokine challenge increased Rac1 activity in neutrophils and NSC23766 markedly reduced this neutrophil activity of Rac1. Inhibition of Rac1 abolished CXC chemokine-induced neutrophil chemotaxis and up-regulation of Mac-1 in vitro. Taken together, Rac1 signaling plays a significant role in controlling accumulation of neutrophils and tissue injury in experimental colitis. Thus, our novel results suggest that targeting Rac1 signaling might be a useful way to protect against neutrophil-mediated tissue injury in acute colitis.
  •  
6.
  • Hasan, Zirak, et al. (författare)
  • Rho-Kinase Signaling Regulates Pulmonary Infiltration of Neutrophils in Abdominal Sepsis via Attenuation of CXC Chemokine Formation and Mac-1 Expression on Neutrophils.
  • 2012
  • Ingår i: Shock. - 1540-0514. ; 37:3, s. 282-288
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: Excessive neutrophil infiltration is a major component in septic lung injury, although the signaling mechanisms behind pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. Herein, we hypothesized that Rho-kinase activity may play a significant role in pulmonary neutrophil recruitment and tissue damage in abdominal sepsis. Male C57BL/6 mice were treated with the Rho-kinase inhibitor Y-27632 (0.5 or 5 mg/kg) before cecal ligation and puncture. Bronchoalveolar lavage fluid and lung tissue were harvested for analysis of neutrophil infiltration, as well as edema and CXC chemokine formation. Blood was collected for analysis of Mac-1 on neutrophils and CD40L on platelets as well as soluble CD40L and metalloproteinase-9 (MMP-9) in plasma. CLP triggered significant pulmonary damage characterized by neutrophil infiltration, increased levels of CXC chemokines, and edema formation in the lung. Furthermore, CLP up-regulated Mac-1 expression on neutrophils, decreased CD40L on platelets and increased soluble CD40L and MMP-9 in the circulation. Interestingly, inhibition of Rho-kinase dose-dependently decreased CLP-induced neutrophil expression of Mac-1, formation of CXC chemokines and edema as well as neutrophil infiltration and tissue damage in the lung. Moreover, Rho-kinase inhibition significantly reduced sepsis-provoked gene-expression of CXC chemokines in alveolar macrophages. In contrast, Rho-kinase inhibition had no effect on platelet shedding of CD40L or plasma levels of MMP-9 in septic mice. In conclusion, these data demonstrate that the Rho-kinase signaling pathway plays a key role in regulating pulmonary infiltration of neutrophils and tissue injury via regulation of CXC chemokine production in the lung and Mac-1 expression on neutrophils in abdominal sepsis.
  •  
7.
  • Hwaiz, Rundk, et al. (författare)
  • Rac1 signaling regulates sepsis-induced pathologic inflammation in the lung via attenuation of Mac-1 expression and CXC chemokine formation.
  • 2013
  • Ingår i: Journal of Surgical Research. - : Elsevier BV. - 1095-8673 .- 0022-4804. ; 183:2, s. 798-807
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive neutrophil recruitment is a major feature in septic lung damage although the signaling mechanisms behind pulmonary infiltration of neutrophils in sepsis remain elusive. In the present study, we hypothesized that Rac1 might play an important role in pulmonary neutrophil accumulation and tissue injury in abdominal sepsis. Male C57BL/6 mice were treated with Rac1 inhibitor NSC23766 (5 mg/kg) before cecal ligation and puncture (CLP). Bronchoalveolar lavage fluid and lung tissue were collected for the quantification of neutrophil recruitment and edema and CXC chemokine formation. Blood was collected for the determination of Mac-1 on neutrophils and proinflammatory compounds in plasma. Gene expression of CXC chemokines and tumor necrosis factor alpha was determined by quantitative reverse transcription-polymerase chain reaction in alveolar macrophages. Rac1 activity was increased in lungs from septic animals, and NSC23766 significantly decreased pulmonary activity of Rac1 induced by CLP. Administration of NSC23766 markedly reduced CLP-triggered neutrophil infiltration, edema formation, and tissue damage in the lung. Inhibition of Rac1 decreased CLP-induced neutrophil expression of Mac-1 and pulmonary formation of CXC chemokines. Moreover, NSC23766 abolished the sepsis-evoked elevation of messenger RNA levels of CXC chemokines and tumor necrosis factor alpha in alveolar macrophages. Rac1 inhibition decreased the CLP-induced increase in plasma levels of high mobility group protein B1 and interleukin 6, indicating a role of Rac1 in systemic inflammation. In conclusion, our results demonstrate that Rac1 signaling plays a key role in regulating pulmonary infiltration of neutrophils and tissue injury via regulation of chemokine production in the lung and Mac-1 expression on neutrophils in abdominal sepsis. Thus, targeting Rac1 activity might be a useful strategy to protect the lung in abdominal sepsis.
  •  
8.
  • Luo, Lingtao, et al. (författare)
  • Pro-inflammatory role of neutrophil extracellular traps in abdominal sepsis.
  • 2014
  • Ingår i: American Journal of Physiology: Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1522-1504 .- 1040-0605. ; 307:7, s. 586-596
  • Tidskriftsartikel (refereegranskat)abstract
    • Excessive neutrophil activation is a major component in septic lung injury. Neutrophil-derived DNA may form extracellular traps in response to bacterial invasions. The aim of the present study was to investigate the potential role of neutrophil extracellular traps (NETs) in septic lung injury. Male C57BL/6 mice were treated with rhDNAse (5 mg/kg) after cecal ligation and puncture (CLP). Extracellular DNA was stained by Sytox green and NET formation was quantified by confocal microscopy and cell-free DNA in plasma, peritoneal cavity and lung. Blood, peritoneal fluid and lung tissue were harvested for analysis of neutrophil infiltration, NET levels, tissue injury as well as CXC chemokine and cytokine formation. We observed that CLP caused increased formation of NETs in the plasma, peritoneal cavity and lung. Administration of rhDNAse not only eliminated NET formation in the plasma, peritoneal cavity and bronchoalveolar space but also reduced lung edema and tissue damage 24 h after CLP induction. Moreover, treatment with rhDNAse decreased CLP-induced formation of CXC chemokines, IL-6 and HMGB1 in the plasma as well as CXC chemokines and IL-6 in the lung. In vitro, we found that neutrophil-derived NETs had the capacity to stimulate secretion of CXCL2, TNF-α and HMGB1 from alveolar macrophages. Taken together, our findings show that NETs regulate pulmonary infiltration of neutrophils and tissue injury via formation of pro-inflammatory compounds in abdominal sepsis. Thus, we conclude that NETs exert a pro-inflammatory role in septic lung injury.
  •  
9.
  • Merza, Mohammed, et al. (författare)
  • Inhibition of geranylgeranyltransferase attenuates neutrophil accumulation and tissue injury in severe acute pancreatitis.
  • 2013
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 1938-3673 .- 0741-5400. ; 94:3, s. 493-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Leukocyte infiltration and acinar cell necrosis are hallmarks of severe AP, but the signaling pathways regulating inflammation and organ injury in the pancreas remain elusive. In the present study, we investigated the role of geranylgeranyltransferase in AP. Male C57BL/6 mice were treated with a geranylgeranyltransferase inhibitor GGTI-2133 (20 mg/kg) prior to induction of pancreatitis by infusion of taurocholate into the pancreatic duct. Pretreatment with GGTI-2133 reduced plasma amylase levels, pancreatic neutrophil recruitment, hemorrhage, and edema formation in taurocholate-evoked pancreatitis. Moreover, administration of GGTI-2133 decreased the taurocholate-induced increase of MPO activity in the pancreas and lung. Treatment with GGTI-2133 markedly reduced levels of CXCL2 in the pancreas and IL-6 in the plasma in response to taurocholate challenge. Notably, geranylgeranyltransferase inhibition abolished neutrophil expression of Mac-1 in mice with pancreatitis. Finally, inhibition of geranylgeranyltransferase had no direct effect on secretagogue-induced activation of trypsinogen in pancreatic acinar cells in vitro. A significant role of geranylgeranyltransferase was confirmed in an alternate model of AP induced by L-arginine challenge. Our findings show that geranylgeranyltransferase regulates neutrophil accumulation and tissue damage via expression of Mac-1 on neutrophils and CXCL2 formation in AP. Thus, these results reveal new signaling mechanisms in pancreatitis and indicate that targeting geranylgeranyltransferase might be an effective way to ameliorate severe AP.
  •  
10.
  • Muhammad, Asad, et al. (författare)
  • Platelets support pulmonary recruitment of neutrophils in abdominal sepsis
  • 2009
  • Ingår i: Critical Care Medicine. - 1530-0293. ; 37:4, s. 1389-1396
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Recent findings Indicate that platelets not only regulate thrombosis and hemostasis but may also be involved in proinflammatory activities. Herein, we hypothesized that platelets may play a role in sepsis by activating and priming circulating neutrophils for subsequent recruitment Into the lung. Design: Prospective experimental study. Setting. University Hospital Research Unit. Subject. Male C57BL/6 mice. Interventions. Lung edema, bronchoalveolar infiltration of neutrophils, levels of myeloperoxidase, expression and function of membrane-activated complex-1 (Mac-1) on neutrophils and the CXC chemokines, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant were determined after cecal ligation and puncture (CLP). Mice received a platelet-depleting antibody as well as antibodies directed against P-selectin glycoprotein-ligand-1 and Mac-1 before CLP induction. Measurements and Main Results. CLP caused significant pulmonary damage characterized by neutrophil infiltration, increased levels of CXC chemokines, and edema formation in the lung. Furthermore, CLP up-regulated Mac-1 expression on neutrophils and increased the number of neutrophils binding platelets in the circulation. Interestingly, depletion of platelets reduced CLP-induced edema and neutrophil recruitment in the bronchoalveolar space by >60%. Furthermore, depletion of platelets reduced Mac-1 expression on neutrophils. On the other hand, inhibition of P-selectin glycoprotein-ligand-1 abolished CLP-induced neutrophil-platelet aggregation but had no effect on neutrophil expression of Mac-1. Conclusions: These data demonstrate that platelets play a key role in regulating infiltration of neutrophils and edema formation in the lung via upregulation of Mac-1 in abdominal sepsis. (Crit Care Med 2009; 37:1389-1396)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy