SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tingström Anders) srt2:(2005-2009);mspu:(article)"

Sökning: WFRF:(Tingström Anders) > (2005-2009) > Tidskriftsartikel

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekstrand, Joakim, et al. (författare)
  • Environmental enrichment, exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex.
  • 2008
  • Ingår i: Neuroscience Letters. - : Elsevier BV. - 0304-3940. ; 442, s. 203-207
  • Tidskriftsartikel (refereegranskat)abstract
    • Stress and environmental enrichment have opposing effects on cerebral cellular plasticity. Stress-induced disturbances in neuronal and glial plasticity have been implicated in the pathophysiology of affective disorders. Patients with depression often show volume reductions in specific brain regions. The mechanisms behind these changes are not well understood, but animal studies have indicated that increased levels of glucocorticoids and stress have negative impact on the neuronal and glial cell populations. On the contrary, enriched environment and physical activity have positive effects. In this study we have examined the effect of corticosterone (CORT), environmental enrichment (EE) and running on angiogenesis in hippocampus and prefrontal cortex (PFC). We demonstrate a dramatic inhibition in endothelial cell proliferation in these brain regions in CORT-treated rats. Environmental enrichment had the opposite effect and stimulated endothelial cell proliferation both in the hippocampus and in the PFC. Running had a stimulatory effect in hippocampus, but not in the PFC. We suggest that the angiostatic effect of CORT demonstrated in this study might be paralleled in human subjects exposed to high levels of stress hormones for prolonged periods of time. Raised cortisol levels in depressed or old patients could, by reducing endothelial cell formation/turnover, lead to rarefaction and aging of the vascular bed, and as a result, neuronal function could be impaired. It is tempting to speculate that a physically and intellectually active life may protect against stress-induced vascular changes. Therapeutic agents also targeting the cerebral vasculature could consequently constitute a new tool in the combat of stress-related disorders.
  •  
2.
  • Hellsten, Johan, et al. (författare)
  • Electroconvulsive seizures induce angiogenesis in adult rat hippocampus
  • 2005
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 0006-3223. ; 58:11, s. 871-878
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Electroconvulsive seizure (ECS)-treatment, a model for electroconvulsive therapy (ECT) has been shown to induce proliferation of endothelial cells in the dentate gyrus (DG) of adult rats. Here we quantified the net angiogenic response after hypoxia a known inducer of aniogenesis. Therefore we also examined the effect of oxygenation on ECS-induced proliferation of endothelial cells. Methods: Total endothelial cell numbers and vessel length were estimated utilizing design based stereological analysis methods. Endothelial cell proliferation in the DG after ECS with or withouy oxygenation was assessed using bromodeoxyuridine. Results: The total number of endothelial cell numbers and vessels lenght was increased. Oxygenation did not abolish the ECS-induced proliferation of endothelial cells in the DG. Conclusions: ECS-treatment induces a dramatic increase in endothelial cell proliferation leading to a 30% increase in the total numberof endothelial cells. The increase in cell number resulted i na 16% increase in vessel length. These findings raise the possibility that similar vascular growth is induced by clinically administered ECT.
  •  
3.
  • Jansson, Linda, et al. (författare)
  • Region Specific Hypothalamic Neuronal Activation and Endothelial Cell Proliferation in Response to Electroconvulsive Seizures.
  • 2006
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 0006-3223. ; 60:8, s. 874-881
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Major depression is often associated with disturbances in basal biological functions regulated by the hypothalamus. Electroconvulsive therapy (ECT), an efficient anti-depressant treatment. alters the activity of hypothalamic neurons. We have previously shown an increased proliferation of endothelial cells in specific areas of the rat hippocampus in response to electroconvulsive seizure (ECS) treatment, an animal model for ECT. Here we examine the effect of ECS treatment on neuronal activation and endothelial cell proliferation in mid-hypothalamus. Methods. Rats received one daily ECS treatment for 5 days and cell proliferation was detected by bromodeoxyuridine (BrdU). The number of cells double-labeled for BrdU and the endothelial cell marker rat endothelial cell antigen-1 was determined. Neuronal activation in response to acute ECS treatment was detected as c-Fos immunoreactivity in an additional experiment. Results: We demonstrate a correlating pattern of increases in neuronal activation and increased endothelial cell proliferation in the paraventricular nucleus, the supraoptic nucleus, and the ventromedial nucleus of the hypothalamus after ECS treatment. Conclusions: Hypothalamic areas with the largest increase in neuronal activation after ECS treatment exhibit increased endothelial cell proliferation. We suggest that similar angiogenic responses to ECT might counteract hypothalamic dysfunction in depressive disorder.
  •  
4.
  • Jayatissa, Magdalena N., et al. (författare)
  • Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression
  • 2006
  • Ingår i: Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 1740-634X .- 0893-133X. ; 31:11, s. 2395-2404
  • Tidskriftsartikel (refereegranskat)abstract
    • From clinical studies it is known that recurrent depressive episodes associate with a reduced hippocampal volume. Conversely, preclinical studies have shown that chronic antidepressant treatment increases hippocampal neurogenesis. Consequently, it has been suggested that a deficit in hippocampal neurogenesis is implicated in the pathophysiology of depression. To study a potential correlation between recovery and hippocampal cytogenesis, we established the chronic mild stress ( CMS) rat model of depression. When rats are subjected to CMS, several depressive symptoms develop, including the major symptom anhedonia. Rats were exposed to stress for 2 weeks and subsequently to stress in combination with antidepressant treatment for 4 consecutive weeks. The behavioral deficit measured in anhedonic animals is a reduced intake of a sucrose solution. Prior to perfusion animals were injected with bromodeoxyuridine ( BrdU), a marker of proliferating cells. Brains were sectioned horizontally and newborn cells positive for BrdU were counted in the dentate gyrus and tracked in a dorsoventral direction. CMS significantly decreased sucrose consumption and cytogenesis in the ventral part of the hippocampal formation. During exposure to the antidepressant escitalopram, given as intraperitoneally dosages of either 5 or 10 mg/kg/day, animals distributed in a bimodal fashion into a group, which recovered ( increase in sucrose consumption), and a subgroup, which refracted treatment ( no increase in sucrose consumption). Chronic treatment with escitalopram reversed the CMS-induced decrease in cytogenesis in the dentate gyrus of the ventral hippocampal formation, but in recovered animals only. Our data show a correlation between recovery from anhedonia, as measured by cessation of behavioral deficits in the CMS model, and an increase in cytogenesis in the dentate gyrus of the ventral hippocampal formation.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy