SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tolmachev Vladimir) ;pers:(Leitao Charles Dahlsson)"

Sökning: WFRF:(Tolmachev Vladimir) > Leitao Charles Dahlsson

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altai, Mohamed, et al. (författare)
  • Influence of Molecular Design on the Targeting Properties of ABD-Fused Mono- and Bi-Valent Anti-HER3 Affibody Therapeutic Constructs
  • 2018
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of human epidermal growth factor receptor type 3 (HER3) is associated with tumour cell resistance to HER-targeted therapies. Monoclonal antibodies (mAbs) targeting HER3 are currently being investigated for treatment of various types of cancers. Cumulative evidence suggests that affibody molecules may be appropriate alternatives to mAbs. We previously reported a fusion construct (3A3) containing two HER3-targeting affibody molecules flanking an engineered albumin-binding domain (ABD 035) included for the extension of half-life in circulation. The 3A3 fusion protein (19.7 kDa) was shown to delay tumour growth in mice bearing HER3-expressing xenografts and was equipotent to the mAb seribantumab. Here, we have designed and explored a series of novel formats of anti-HER3 affibody molecules fused to the ABD in different orientations. All constructs inhibited heregulin-induced phosphorylation in HER3-expressing BxPC-3 and DU-145 cell lines. Biodistribution studies demonstrated extended the half-life of all ABD-fused constructs, although at different levels. The capacity of our ABD-fused proteins to accumulate in HER3-expressing tumours was demonstrated in nude mice bearing BxPC-3 xenografts. Formats where the ABD was located on the C-terminus of affibody binding domains (3A, 33A, and 3A3) provided the best tumour targeting properties in vivo. Further development of these promising candidates for treatment of HER3-overexpressing tumours is therefore justified.
  •  
2.
  • Dahlsson Leitao, Charles, et al. (författare)
  • Molecular Design of HER3-Targeting Affibody Molecules : Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68Ga-Labeled Tracers
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 20:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody-based imaging of HER3 is a promising approach for patient stratification. We investigated the influence of a hydrophilic HEHEHE-tag ((HE)3-tag) and two different gallium-68/chelator-complexes on the biodistribution of Z08698 with the aim to improve the tracer for PET imaging. Affibody molecules (HE)3-Z08698-X and Z08698-X (X = NOTA, NODAGA) were produced and labeled with gallium-68. Binding specificity and cellular processing were studied in HER3-expressing human cancer cell lines BxPC-3 and DU145. Biodistribution was studied 3 h p.i. in Balb/c nu/nu mice bearing BxPC-3 xenografts. Mice were imaged 3 h p.i. using microPET/CT. Conjugates were stably labeled with gallium-68 and bound specifically to HER3 in vitro and in vivo. Association to cells was rapid but internalization was slow. Uptake in tissues, including tumors, was lower for (HE)3-Z08698-X than for non-tagged variants. The neutral [68Ga]Ga-NODAGA complex reduced the hepatic uptake of Z08698 compared to positively charged [68Ga]Ga-NOTA-conjugated variants. The influence of the chelator was more pronounced in variants without (HE)3-tag. In conclusion, hydrophilic (HE)3-tag and neutral charge of the [68Ga]Ga-NODAGA complex promoted blood clearance and lowered hepatic uptake of Z08698. [68Ga]Ga-(HE)3-Z08698-NODAGA was considered most promising, providing the lowest blood and hepatic uptake and the best imaging contrast among the tested variants.
  •  
3.
  • Garousi, Javad, et al. (författare)
  • Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbonic anhydrase IX (CAIX) is a cancer-associated molecular target for several classes of therapeutics. CAIX is overexpressed in a large fraction of renal cell carcinomas (RCC). Radionuclide molecular imaging of CAIX-expression might offer a non-invasive methodology for stratification of patients with disseminated RCC for CAIX-targeting therapeutics. Radiolabeled monoclonal antibodies and their fragments are actively investigated for imaging of CAIX expression. Promising alternatives are small non-immunoglobulin scaffold proteins, such as affibody molecules. A CAIX-targeting affibody ZCAIX:2 was re-designed with the aim to decrease off-target interactions and increase imaging contrast. The new tracer, DOTA-HE3-ZCAIX:2, was labeled with In-111 and characterized in vitro. Tumor-targeting properties of [In-111]In-DOTA-HE3-ZCAIX:2 were compared head-to-head with properties of the parental variant, [(99)mTc]Tc(CO)(3)-HE3-ZCAIX:2, and the most promising antibody fragment-based tracer, [In-111]In-DTPA-G250(Fab')(2), in the same batch of nude mice bearing CAIX-expressing RCC xenografts. Compared to the (99)mTc-labeled parental variant, [In-111]In-DOTA-HE3-ZCAIX:2 provides significantly higher tumor-to-lung, tumor-to-bone and tumor-to-liver ratios, which is essential for imaging of CAIX expression in the major metastatic sites of RCC. [In-111]In-DOTA-HE3-ZCAIX:2 offers significantly higher tumor-to-organ ratios compared with [In-111]In-G250(Fab']2. In conclusion, [In-111]In-DOTA-HE3-ZCAIX:2 can be considered as a highly promising tracer for imaging of CAIX expression in RCC metastases based on our results and literature data.
  •  
4.
  • Leitao, Charles Dahlsson, et al. (författare)
  • Conditionally activated affibody-based prodrug targeting EGFR demonstrates improved tumor selectivity
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Safety and efficacy of cancer-targeting treatments can be improved by conditional activation conferred by the distinct milieu of the tumour microenvironment. Proteases are intricately involved in tumorigenesis and commonly dysregulated with elevated expression and activity. Design of prodrug molecules with protease-dependent activation has the potential to increase tumor-selective targeting, while decreasing the exposure to healthy tissues, thus improving safety, allowing for administration of higher doses or use of more aggressive treatment options, leading to higher therapeutic efficacy. We have previously performed in vitro characterizations of an affibody-based prodrug approach for protease-mediated targeting of EGFR. In this study we demonstrate the potential for selective tumor-targeting and shielded uptake in healthy tissues in vivo using tumor-bearing mice for an EGFR-targeting affibody prodrug.
  •  
5.
  • Leitao, Charles Dahlsson, 1992-, et al. (författare)
  • Conditionally activated affibody-based prodrug targeting EGFR demonstrates improved tumour selectivity
  • 2023
  • Ingår i: Journal of Controlled Release. - : Elsevier BV. - 0168-3659 .- 1873-4995. ; 357, s. 185-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Safety and efficacy of cancer-targeting treatments can be improved by conditional activation enabled by the distinct milieu of the tumour microenvironment. Proteases are intricately involved in tumourigenesis and commonly dysregulated with elevated expression and activity. Design of prodrug molecules with protease -dependent activation has the potential to increase tumour-selective targeting while decreasing exposure to healthy tissues, thus improving the safety profile for patients. Higher selectivity could also allow for adminis-tration of higher doses or use of more aggressive treatment options, leading to higher therapeutic efficacy. We have previously developed an affibody-based prodrug with conditional targeting of EGFR conferred by an anti-idiotypic affibody masking domain (ZB05). We could show that binding to endogenous EGFR on cancer cells in vitro was restored following proteolytic removal of ZB05. In this study we evaluate a novel affibody-based pro -drug design, which incorporates a protease substrate sequence recognized by cancer-associated proteases and demonstrate the potential of this approach for selective tumour-targeting and shielded uptake in healthy tissues in vivo using tumour-bearing mice. This may widen the therapeutic index of cytotoxic EGFR-targeted thera-peutics by decreasing side effects, improving selectivity of drug delivery, and enabling the use of more potent cytotoxic drugs.
  •  
6.
  • Leitao, Charles Dahlsson, et al. (författare)
  • Evaluating the Therapeutic Efficacy of Mono- and Bivalent Affibody-Based Fusion Proteins Targeting HER3 in a Pancreatic Cancer Xenograft Model
  • 2020
  • Ingår i: Pharmaceutics. - : MDPI. - 1999-4923. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Human epidermal growth factor receptor 3 (HER3) has been increasingly scrutinized as a potential drug target since the elucidation of its role in mediating tumor growth and acquired therapy resistance. Affibody molecules are so-called scaffold proteins with favorable biophysical properties, such as a small size for improved tissue penetration and extravasation, thermal and chemical stability, and a high tolerance to modifications. Additionally, affibody molecules are efficiently produced in prokaryotic hosts or by chemical peptide synthesis. We have previously evaluated the biodistribution profiles of five mono- and bivalent anti-HER3 affibody molecules (designated as 3) fused to an albumin-binding domain (designated as A), 3A, 33A, 3A3, A33, and A3, that inhibit ligand-dependent phosphorylation. In the present study, we examined the therapeutic efficacy of the three most promising variants, 3A, 33A, and 3A3, in a direct comparison with the HER3-targeting monoclonal antibody seribantumab (MM-121) in a preclinical BxPC-3 pancreatic cancer model. Xenografted mice were treated with either an affibody construct or MM-121 and the tumor growth was compared to a vehicle group. Receptor occupancy was estimated by positron emission tomography/computed tomography (PET/CT) imaging using a HER3-targeting affibody imaging agent [Ga-68]Ga-(HE)(3)-Z(08698)-NODAGA. The affibody molecules could inhibit ligand-dependent phosphorylation and cell proliferation in vitro and demonstrated tumor growth inhibition in vivo comparable to that of MM-121. PET/CT imaging showed full receptor occupancy for all tested drug candidates. Treatment with 3A and 3A3 affibody constructs was more efficient than with 33A and similar to the anti-HER3 antibody seribantumab, showing that the molecular design of affibody-based therapeutics targeting HER3 in terms of the relative position of functional domains and valency has an impact on therapeutic effect.
  •  
7.
  • Orlova, Anna, 1960-, et al. (författare)
  • Evaluation of the Therapeutic Potential of a HER3-Binding Affibody Construct TAM-HER3 in Comparison with a Monoclonal Antibody, Seribantumab
  • 2018
  • Ingår i: Molecular Pharmaceutics. - : AMER CHEMICAL SOC. - 1543-8384 .- 1543-8392. ; 15:8, s. 3394-3403
  • Tidskriftsartikel (refereegranskat)abstract
    • Human epidermal growth factor receptor type 3 (HER3) is recognized to be involved in resistance to HER targeting therapies. A number of HER3-targeting monoclonal antibodies are under clinical investigation as potential cancer therapeutics. Smaller high-affinity scaffold proteins are attractive non-Fc containing alternatives to antibodies. A previous study indicated that anti-HER3 affibody molecules could delay the growth of xenografted HER3-positive tumors. Here, we designed a second-generation HER3-targeting construct (TAM-HER3), containing two HER3-specific affibody molecules bridged by an albumin-binding domain (ABD) for extension of blood circulation. Receptor blocking activity was demonstrated in vitro. In mice bearing BxPC-3 xenografts, the therapeutic efficacy of TAM-HER3 was compared to the HER3-specific monoclonal antibody seribantumab (MM-121). TAM-HER3 inhibited heregulin-induced phosphorylation in a panel of HER3-expressing cancer cells and was found to be equally as potent as seribantumab in terms of therapeutic efficacy in vivo and with a similar safety profile. Median survival times were 60 days for TAM-HER3, 54 days for seribantumab, and 41 days for the control group. No pathological changes were observed in cytopathological examination. The multimeric HER3-binding affibody molecule in fusion to ABD seems promising for further evaluation as candidate therapeutics for treatment of HER3-overexpressing tumors.
  •  
8.
  •  
9.
  •  
10.
  • Rinne, Sara S., et al. (författare)
  • Benefit of Later-Time-Point PET Imaging of HER3 Expression Using Optimized Radiocobalt-Labeled Affibody Molecules
  • 2020
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 21:6
  • Tidskriftsartikel (refereegranskat)abstract
    • HER3-binding affibody molecules are a promising format for visualization of HER3 expression. Cobalt-55, a positron-emitting isotope, with a half-life of 17.5 h, allows for next-day imaging. We investigated the influence of the charge of the radiocobalt-chelator complex on the biodistribution of anti-HER3 affibody molecule (HE)(3)-Z(HER3) and compared the best radiocobalt-labeled variant with a recently optimized gallium-labeled variant. Affibody conjugates (HE)(3)-Z(HER3)-X (X = NOTA, NODAGA, DOTA, DOTAGA) were labeled with [Co-57]Co (surrogate for Co-55). Affinity measurements, binding specificity and cellular processing were studied in two HER3-expressing cancer cell lines. Biodistribution was studied 3 and 24 h post-injection (pi) in mice with HER3-expressing BxPC-3 xenografts and compared to [Ga-68]Ga-(HE)(3)-Z(HER3)-NODAGA. Micro-single-photon emission tomography/computed tomography (microSPECT/CT) and micro-positron emission tomography/computed tomography (microPET/CT) imaging was performed 3 and 24 h pi. Stably labeled conjugates bound to HER3 with subnanomolar affinity. [Co-57]Co-(HE)(3)-Z(HER3)-DOTA had the best tumor retention and a significantly lower concentration in blood than other conjugates, leading to superior tumor-to-blood and tumor-to-liver ratios 24 h pi. Compared to [Ga-68]Ga-(HE)(3)-Z(HER3)-NODAGA 3 h pi, [Co-57]Co-(HE)(3)-Z(HER3)-DOTA provided superior imaging contrast in liver 24 h pi. Concluding, the composition and charge of the [Co-57]Co-chelator complex influenced the uptake in tumors and normal tissue. [Co-57]Co-(HE)(3)-Z(HER3)-DOTA provided the best imaging properties among the cobalt-labeled conjugates. Delayed imaging of HER3 expression with [Co-57]Co-(HE)(3)-Z(HER3)-DOTA improved imaging contrast compared to early-time-point imaging with [Ga-68]Ga-(HE)(3)-Z(HER3)-NODAGA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy