SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Torkamani A) ;lar1:(ltu)"

Sökning: WFRF:(Torkamani A) > Luleå tekniska universitet

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hemati, N., et al. (författare)
  • Effect of Rare Earth Elements on the Microstructural and Mechanical Properties of ZK60 Alloy after T5 Treatment
  • 2022
  • Ingår i: Russian Journal of Non-Ferrous Metals = Izvestiya VUZ. Tsvetnaya Metallurgiya. - : Springer Nature. - 1067-8212 .- 1934-970X. ; 63:2, s. 223-236
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the microstructure and mechanical properties of ZK60 extruded alloy were investigated after adding 3 wt % of Ce and Y and T5 operation. The microstructure of the base alloy consists of alpha-Mg and Mg7Zn3. In addition to these phases, MgZn2Ce and Mg3Y2Zn3 phases are formed by adding Ce and Y, respectively. The addition of rare earth elements reduces the grain size of the base alloy from 6.1 mu m to less than 3 mu m. The volume fraction of precipitates also increases because of the additions. After T5 operation for different times, it was observed that the hardness peak (88 HV) for the base alloy is achieved after 18 hours. However, the peak hardness of alloys containing rare earth elements occurred in 24 hours. Increasing the aging time results in an increase in the grain size of the base alloy, while it led to a slight increase in the grain size of alloys containing rare earth elements. The higher hardness at the peak age of all studied alloys is explained based on the increase in the volume fraction of precipitates during this operation. The delay in the peak age in alloys containing rare earth elements is due to the delay in the formation of beta(2’) precipitates. The shear punch test results of extruded alloys show that in alloys containing Ce and Y the shear strength is 156 and 160 MPa, respectively. While this value is about 148 MPa for the base alloy. At the peak age, this strength for ZK60-Ce and ZK60-Y alloys increases by 11% and 13%, respectively. Higher strength and hardness in Y-containing alloys are due to the simultaneous strengthening of solid solution and precipitates along with the formation of precipitates with high thermal stability.
  •  
2.
  • Banijamali, S. M., et al. (författare)
  • Effect of Ce Addition on the Tribological Behavior of ZK60 Mg-Alloy
  • 2021
  • Ingår i: Metals and Materials International. - : Springer. - 1598-9623 .- 2005-4149. ; 27:8, s. 2732-2742
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work aims to study the tribological behavior of an extruded ZK60 alloy in the presence of Ce; in a previous study, among ZK60 alloys with different Ce addition rates, an alloy with 3 wt% of Ce was found to exhibit the most promising mechanical (e.g., hardness and strengths) properties, while its wear behavior remained unknown. The results of microstructural examinations by optical and electron microscopes show that Ce addition reduces the grain size from 6.1 to 2.0 μm. Besides, in addition to the precipitates already distributed in the base alloy (Mg7Zn3), Ce could promote the formation of a new precipitate (MgZn2Ce), increasing the total fraction of the precipitates. These microstructural evolutions enhance the strengths of the studied ZK60 alloy, as the yield and tensile strengths increase from 212 to 308 MPa and from 297 to 354 MPa, respectively. A pin on disc tribometer was employed to study the wear behavior of the developed alloy under different normal loads (5, 20, 40, and 60 N). The results show that the base and Ce-added alloys exhibit almost a similar frictional behavior, while the wear resistance of the Ce-added alloy is higher within the load ranges applied: (i) in low load conditions (5 and 20 N), where the abrasive wear is the active mechanism, the precipitates in the Ce-added alloy could enhance the wear resistance. (ii) Under the load of 40 N, oxidative wear is also an operative wear mechanism, leading to a sharp increase in the wear rate of the alloys. In this condition, Ce could provide a protective oxide layer, which could improve the wear resistance of the alloy. (iii) At a load of 60 N, both studied alloys exhibit a similar wear rate due to a severe oxidation condition. Therefore, beyond this loading condition, the microstructural evolutions (e.g., change in precipitation behavior) caused by Ce addition can no longer contribute to the enhancement of wear resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Palizdar, Y. (2)
Torkamani, Hadi (2)
Banijamali, S. M. (1)
Najafi, S. (1)
Sheikhani, A. (1)
Nezhad, M. Soltan Al ... (1)
visa fler...
Moghaddam, Pouria Va ... (1)
Hemati, N. (1)
Kolahi, A. (1)
Razavi, M. Shariat (1)
Kheradmand, A. (1)
visa färre...
Lärosäte
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy