SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tsolaki M) ;srt2:(2020-2022);lar1:(uu)"

Sökning: WFRF:(Tsolaki M) > (2020-2022) > Uppsala universitet

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Rojas, I., et al. (författare)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
2.
  •  
3.
  • Bellenguez, C, et al. (författare)
  • New insights into the genetic etiology of Alzheimer's disease and related dementias
  • 2022
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:4, s. 412-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
  •  
4.
  • Jansen, Iris E, et al. (författare)
  • Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
  • 2022
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 144:5, s. 821-842
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
  •  
5.
  • Elvsashagen, T, et al. (författare)
  • The genetic architecture of human brainstem structures and their involvement in common brain disorders
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 4016-
  • Tidskriftsartikel (refereegranskat)abstract
    • Brainstem regions support vital bodily functions, yet their genetic architectures and involvement in common brain disorders remain understudied. Here, using imaging-genetics data from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map them to 305 genes. In a replication sample of 7432 participants most of the loci show the same effect direction and are significant at a nominal threshold. We detect genetic overlap between brainstem volumes and eight psychiatric and neurological disorders. In additional clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls, we observe differential volume alterations in schizophrenia, bipolar disorder, multiple sclerosis, mild cognitive impairment, dementia, and Parkinson’s disease, supporting the relevance of brainstem regions and their genetic architectures in common brain disorders.
  •  
6.
  • Belloy, Michael E., et al. (författare)
  • Challenges at the APOE locus : a robust quality control approach for accurate APOE genotyping
  • 2022
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Nature. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genetic variants within the APOE locus may modulate Alzheimer's disease (AD) risk independently or in conjunction with APOE*2/3/4 genotypes. Identifying such variants and mechanisms would importantly advance our understanding of APOE pathophysiology and provide critical guidance for AD therapies aimed at APOE. The APOE locus however remains relatively poorly understood in AD, owing to multiple challenges that include its complex linkage structure and uncertainty in APOE*2/3/4 genotype quality. Here, we present a novel APOE*2/3/4 filtering approach and showcase its relevance on AD risk association analyses for the rs439401 variant, which is located 1801 base pairs downstream of APOE and has been associated with a potential regulatory effect on APOE.Methods: We used thirty-two AD-related cohorts, with genetic data from various high-density single-nucleotide polymorphism microarrays, whole-genome sequencing, and whole-exome sequencing. Study participants were filtered to be ages 60 and older, non-Hispanic, of European ancestry, and diagnosed as cognitively normal or AD (n = 65,701). Primary analyses investigated AD risk in APOE*4/4 carriers. Additional supporting analyses were performed in APOE*3/4 and 3/3 strata. Outcomes were compared under two different APOE*2/3/4 filtering approaches.Results: Using more conventional APOE*2/3/4 filtering criteria (approach 1), we showed that, when in-phase with APOE*4, rs439401 was variably associated with protective effects on AD case-control status. However, when applying a novel filter that increases the certainty of the APOE*2/3/4 genotypes by applying more stringent criteria for concordance between the provided APOE genotype and imputed APOE genotype (approach 2), we observed that all significant effects were lost. Conclusions: We showed that careful consideration of APOE genotype and appropriate sample filtering were crucial to robustly interrogate the role of the APOE locus on AD risk. Our study presents a novel APOE filtering approach and provides important guidelines for research into the APOE locus, as well as for elucidating genetic interaction effects with APOE*2/3/4.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy