1. 
 Aad, G., et al.
(författare)

Summary of the ATLAS experiment's sensitivity to supersymmetry after LHC Run 1interpreted in the phenomenological MSSM
 2015

Ingår i: Journal of High Energy Physics.  : Springer.  10298479 . 11266708. ; :10

Tidskriftsartikel (refereegranskat)abstract
 A summary of the constraints from the ATLAS experiment on Rparityconserving supersymmetry is presented. Results from 22 separate ATLAS searches are considered, each based on analysis of up to 20.3 fb(1) of protonproton collision data at centreofmass energies of root s = 7 and 8TeV at the Large Hadron Collider. The results are interpreted in the context of the 19parameter phenomenological minimal supersymmetric standard model, in which the lightest supersymmetric particle is a neutralino, taking into account constraints from previous precision electroweak and flavour measurements as well as from dark matter related measurements. The results are presented in terms of constraints on supersymmetric particle masses and are compared to limits from simplified models. The impact of ATLAS searches on parameters such as the dark matter relic density, the couplings of the observed Higgs boson, and the degree of electroweak finetuning is also shown. Spectra for surviving supersymmetry model points with low finetunings are presented.


2. 


3. 
 Aartsen, M. G., et al.
(författare)

Very highenergy gammaray followup program using neutrino triggers from IceCube
 2016

Ingår i: Journal of Instrumentation.  17480221 . 17480221. ; 11

Tidskriftsartikel (refereegranskat)abstract
 We describe and report the status of a neutrinotriggered program in IceCube that generates realtime alerts for gammaray followup observations by atmosphericCherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, highenergy gammaray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrinoflaring source at the time such neutrinos are recorded. The use of neutrinotriggered alerts thus aims at increasing the availability of simultaneous multimessenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the highenergy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.


4. 
 Aliu, E., et al.
(författare)

Longterm TeV and Xray Observations of the Gammaray Binary HESS J0632+057
 2014

Ingår i: Astrophysical Journal.  0004637X . 15384357. ; 780:2

Tidskriftsartikel (refereegranskat)abstract
 HESS J0632+057 is the only gammaray binary known so far whose position in the sky allows observations with groundbased observatories in both thenorthern and southern hemispheres. Here we report on longterm observations of HESS J0632+057 conducted with the Very Energetic Radiation Imaging Telescope Array System and High Energy Stereoscopic System Cherenkov telescopes and the Xray satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The veryhighenergy (VHE) emission is found to be variable and is correlated with that at Xray energies. An orbital period of 315(4)(+6) days is derived from the Xray data set, which is compatible with previous results, P = (321 +/ 5) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the Xrayemission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant (> 6.5 sigma) detection at orbital phases 0.60.9. Theobtained gammaray and Xray light curves and the correlation of the source emission at these two energy bands are discussed in the context of the recent ephemeris obtained for the system. Our results are compared to those reported for other gammaray binaries.


5. 
 Ade, P. A. R., et al.
(författare)

Planck 2015 results XIV. Dark energy and modified gravity
 2016

Ingår i: Astronomy and Astrophysics.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below similar to 2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as kessence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, typeIa supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshiftspace distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimallycoupled scalar fields or principal component analysis) are in agreement with ACDM. When testing models that also change perturbations (even when the background is fixed to ACDM), some tensions appear in a few scenarios: the maximum one found is similar to 2 sigma for Planck TT + lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3 sigma when external data sets are included. It however disappears when including CMB lensing.


6. 
 Ade, P. A. R., et al.
(författare)

Planck 2015 results XVII. Constraints on primordial nonGaussianity
 2016

Ingår i: Astronomy and Astrophysics.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 The Planck full mission cosmic microwave background (CMB) temperature and Emode polarization maps are analysed to obtain constraints on primordial nonGaussianity (NG). Using three classes of optimal bispectrum estimators  separable templatefitting (KSW), binned, and modal we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone f(NL)(local) = 2.5 +/ 5.7, f(NL)(equil) = 16 +/ 70, and f(NL)(ortho) = 34 +/ 33 (68% CL, statistical). Combining temperature and polarization data we obtain f(NL)(local) = 0.8 +/ 5.0, f(NL)(equil) = 4 +/ 43, and f(NL)(ortho) = 26 +/ 21 (68% CL, statistical). The results are based on comprehensive crossvalidation of these estimators on Gaussian and nonGaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of timedomain deglitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present modelindependent, threedimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general singlefield models of inflation, axion inflation, initial state modifications, models producing parityviolating tensor bispectra, and directionally dependent vector models. We present a wide survey of scaledependent feature and resonance models, accounting for the look elsewhere effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be g(NL)(local) = (9.0 +/ 7.7) x 10(4) (68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the Lambda CDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.


7. 
 Adam, R., et al.
(författare)

Planck 2015 results X. Diffuse component separation : Foreground maps
 2016

Ingår i: Astronomy and Astrophysics.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of fullsky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, freefree, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Fullsky maps are provided for each component, with an angular resolution varying between 7: 5 and 1 degrees. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and bestfit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4pK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, freefree, and synchrotron components; additional observations from external lowfrequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zeropoints. For polarization, the main outstanding issues are instrumental systematics in the 100353 GHz bands on large angular scales in the form of temperaturetopolarization leakage, uncertainties in the analoguetodigital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.


8. 
 Ade, P. A. R., et al.
(författare)

Planck 2015 results XX. Constraints on inflation
 2016

Ingår i: Astronomy and Astrophysics.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n(s) = 0.968 +/ 0.006 and tightly constrain its scale dependence to dn(s)/dln k = 0.003 +/ 0.007 when combined with the Planck lensing likelihood. When the Planck highl polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensortoscalar ratio is r(0).(002) < 0.11 (95% CL). This upper limit is consistent with the Bmode polarization constraint r < 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(phi) proportional to phi(2) and natural inflation are now disfavoured compared to models predicting a smaller tensortoscalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple powerlaw spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slowroll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulationbased analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth PR (k) over the range of scales 0.008 Mpc(1) less than or similar to k less than or similar to 0.1 Mpc(1). At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l approximate to 2040 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and nonGaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Lambda cold dark matter (Lambda CDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the nonadiabatic contribution to the observed CMB temperature variance is vertical bar alpha(nonadi)vertical bar < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slowroll singlefield inflationary models, as expected from the increased precision of Planck data using the full set of observations.


9. 
 Ade, P. A. R., et al.
(författare)

Planck 2015 results XXV. Diffuse lowfrequency Galactic foregrounds
 2016

Ingår i: Astronomy and Astrophysics.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by freefree and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander componentseparation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the freefree emission along the Galactic plane. Comparison of the highlatitude H alpha emission with our freefree map shows residuals that correlate with dust optical depth, consistent with a fraction (approximate to 30%) of H alpha having been scattered by highlatitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in Iv) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H Pi regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photodissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and freefree emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 520 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signaltonoise ratio maps yet of the intensity of the allsky polarized synchrotron emission at frequencies above a few GHz. Most of the highlatitude polarized emission is associated with distinct largescale loops and spurs, and we rediscuss their structure. We argue that nearly all the emission at 40 degrees > l > 90 degrees is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the Fermi bubble/microwave haze, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20 degrees long filament seen in H alpha at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2 sigma upper limit of 1.6% in the Perseus region.


10. 
 Ade, P. A. R., et al.
(författare)

Planck 2015 results XV. Gravitational lensing
 2016

Ingår i: Astronomy and Astrophysics.  00046361 . 14320746. ; 594

Tidskriftsartikel (refereegranskat)abstract
 We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 fullmission release. Using a polarizationonly estimator, we detect lensing at a significance of 5 sigma. We crosscheck the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 <= L <= 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the Lambda CDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percentlevel measurement of the parameter combination sigma(8) Omega(0.25)(m) = 0.591 +/ 0.021. We combine our determination of the lensing potential with the Emode polarization, also measured by Planck, to generate an estimate of the lensing Bmode. We show that this lensing Bmode estimate is correlated with the Bmodes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the largescale temperature anisotropies, detecting a crosscorrelation at the 3 sigma level, as expected because of dark energy in the concordance Lambda CDM model.

