SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tuomi T) ;lar1:(gu)"

Search: WFRF:(Tuomi T) > University of Gothenburg

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sliz, E., et al. (author)
  • Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata
  • 2023
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.
  •  
2.
  •  
3.
  • Heid, Iris M, et al. (author)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Journal article (peer-reviewed)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
4.
  • Speliotes, Elizabeth K., et al. (author)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Journal article (peer-reviewed)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
5.
  • Tedersoo, L., et al. (author)
  • The Global Soil Mycobiome consortium dataset for boosting fungal diversity research
  • 2021
  • In: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 111, s. 573-588
  • Journal article (peer-reviewed)abstract
    • Fungi are highly important biotic components of terrestrial ecosystems, but we still have a very limited understanding about their diversity and distribution. This data article releases a global soil fungal dataset of the Global Soil Mycobiome consortium (GSMc) to boost further research in fungal diversity, biogeography and macroecology. The dataset comprises 722,682 fungal operational taxonomic units (OTUs) derived from PacBio sequencing of full-length ITS and 18S-V9 variable regions from 3200 plots in 108 countries on all continents. The plots are supplied with geographical and edaphic metadata. The OTUs are taxonomically and functionally assigned to guilds and other functional groups. The entire dataset has been corrected by excluding chimeras, index-switch artefacts and potential contamination. The dataset is more inclusive in terms of geographical breadth and phylogenetic diversity of fungi than previously published data. The GSMc dataset is available over the PlutoF repository.
  •  
6.
  • Ahlqvist, E., et al. (author)
  • Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables
  • 2018
  • In: Lancet Diabetes & Endocrinology. - : Elsevier BV. - 2213-8587. ; 6:5, s. 361-369
  • Journal article (peer-reviewed)abstract
    • Background Diabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis. Methods We did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA(1c), and homoeostatic model assessment 2 estimates of beta-cell function and insulin resistance), and were related to prospective data from patient records on development of complications and prescription of medication. Replication was done in three independent cohorts: the Scania Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and risk of diabetic complications and genetic associations. Findings We identified five replicable clusters of patients with diabetes, which had significantly different patient characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes. Interpretation We stratified patients into five subgroups with differing disease progression and risk of diabetic complications. This new substratification might eventually help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes.
  •  
7.
  • Asplund, Olof, et al. (author)
  • Islet Gene View-a tool to facilitate islet research
  • 2022
  • In: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:12
  • Journal article (peer-reviewed)abstract
    • Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (GCG, 56%), amylin (IAPP, 52%), insulin (INS, 44%), and somatostatin (SST, 24%). Inhibition of two DEGs, UNC5D and SERPINE2, impaired glucose-stimulated insulin secretion and impacted cell survival in a human beta-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.
  •  
8.
  • Lyssenko, Valeriya, et al. (author)
  • Genetic prediction of future type 2 diabetes
  • 2005
  • In: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 2:12, s. 1299-1308
  • Journal article (peer-reviewed)abstract
    • Background: Type 2 diabetes (T2D) is a multifactorial disease in which environmental triggers interact with genetic variants in the predisposition to the disease. A number of common variants have been associated with T2D but our knowledge of their ability to predict T2D prospectively is limited. Methods and Findings: By using a Cox proportional hazard model, common variants in the PPARG (P12A), CAPN10 (SNP43 and 44), KCNJ11 (E23K), UCP2 (-866G>A), and IRS1 (G972R) genes were studied for their ability to predict T2D in 2,293 individuals participating in the Botnia study in Finland. After a median follow-up of 6 y, 132 (6%) persons developed T2D. The hazard ratio for risk of developing T2D was 1.7 (95% confidence interval [CI] 1.1-2.7) for the PPARG PP genotype, 1.5 (95% CI 1.0-2.2) for the CAPN10 SNP44 TT genotype, and 2.6 (95% CI 1.5-4.5) for the combination of PPARG and CAPN10 risk genotypes. In individuals with fasting plasma glucose ≥ 5.6 mmol/l and body mass index ≥ 30 kg/m2, the hazard ratio increased to 21.2 (95% CI 8.7-51.4) for the combination of the PPARG PP and CAPN10 SNP43/44 GG/TT genotypes as compared to those with the low-risk genotypes with normal fasting plasma glucose and body mass index < 30 kg/m2. Conclusion: We demonstrate in a large prospective study that variants in the PPARG and CAPN10 genes predict future T2D. Genetic testing might become a future approach to identify individuals at risk of developing T2D.
  •  
9.
  • Mikryukov, Vladimir, et al. (author)
  • Connecting the multiple dimensions of global soil fungal diversity
  • 2023
  • In: Science advances. - 2375-2548. ; 9:48
  • Journal article (peer-reviewed)abstract
    • How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.
  •  
10.
  • Prokopenko, Inga, et al. (author)
  • Variants in MTNR1B influence fasting glucose levels
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 77-81
  • Journal article (peer-reviewed)abstract
    • To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12
Type of publication
journal article (12)
Type of content
peer-reviewed (12)
Author/Editor
Groop, Leif (5)
Tuomi, T. (5)
Tuomi, Tiinamaija (4)
Roslin, Tomas (3)
Soranzo, Nicole (3)
Ohlsson, Claes, 1965 (3)
show more...
Deloukas, Panos (3)
Wareham, Nicholas J. (3)
Almgren, Peter (3)
Kuusisto, Johanna (3)
Isomaa, Bo (3)
Laakso, Markku (3)
McCarthy, Mark I (3)
Boehnke, Michael (3)
Mohlke, Karen L (3)
Tuomilehto, Jaakko (3)
Thorleifsson, Gudmar (3)
Thorsteinsdottir, Un ... (3)
Stefansson, Kari (3)
Abecasis, Goncalo R. (3)
Willemsen, Gonneke (3)
Wichmann, H. Erich (3)
Boomsma, Dorret I. (3)
Jarvelin, Marjo-Riit ... (3)
Barroso, Ines (3)
Peltonen, Leena (3)
Luan, Jian'an (3)
Zhao, Jing Hua (3)
Johnson, Toby (3)
Loos, Ruth J F (3)
Hofman, Albert (3)
Pouta, Anneli (3)
Elliott, Paul (3)
Cupples, L. Adrienne (3)
Illig, Thomas (3)
Voight, Benjamin F. (3)
Hottenga, Jouke-Jan (3)
Schlessinger, David (3)
Prokopenko, Inga (3)
Coin, Lachlan (3)
Wheeler, Eleanor (3)
Jackson, Anne U. (3)
Bonnycastle, Lori L. (3)
Collins, Francis S. (3)
Sanna, Serena (3)
Saramies, Jouko (3)
Fox, Caroline S. (3)
Steinthorsdottir, Va ... (3)
Lindgren, Cecilia M. (3)
Beckmann, Jacques S. (3)
show less...
University
Lund University (7)
Uppsala University (6)
Karolinska Institutet (4)
Swedish University of Agricultural Sciences (4)
Umeå University (2)
show more...
Chalmers University of Technology (1)
show less...
Language
English (12)
Research subject (UKÄ/SCB)
Medical and Health Sciences (8)
Natural sciences (6)
Agricultural Sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view