SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tuomi T) ;mspu:(researchreview)"

Sökning: WFRF:(Tuomi T) > Forskningsöversikt

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
2.
  • Ahuja, Vasudha, et al. (författare)
  • Accuracy of 1-Hour Plasma Glucose During the Oral Glucose Tolerance Test in Diagnosis of Type 2 Diabetes in Adults : A Meta-analysis
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:4, s. 1062-1069
  • Forskningsöversikt (refereegranskat)abstract
    • OBJECTIVE: One-hour plasma glucose (1-h PG) during the oral glucose tolerance test (OGTT) is an accurate predictor of type 2 diabetes. We performed a meta-analysis to determine the optimum cutoff of 1-h PG for detection of type 2 diabetes using 2-h PG as the gold standard. RESEARCH DESIGN AND METHODS: We included 15 studies with 35,551 participants from multiple ethnic groups (53.8% Caucasian) and 2,705 newly detected cases of diabetes based on 2-h PG during OGTT. We excluded cases identified only by elevated fasting plasma glucose and/or HbA1c. We determined the optimal 1-h PG threshold and its accuracy at this cutoff for detection of diabetes (2-h PG ≥11.1 mmol/L) using a mixed linear effects regression model with different weights to sensitivity/specificity (2/3, 1/2, and 1/3). RESULTS: Three cutoffs of 1-h PG, at 10.6 mmol/L, 11.6 mmol/L, and 12.5 mmol/L, had sensitivities of 0.95, 0.92, and 0.87 and specificities of 0.86, 0.91, and 0.94 at weights 2/3, 1/2, and 1/3, respectively. The cutoff of 11.6 mmol/L (95% CI 10.6, 12.6) had a sensitivity of 0.92 (0.87, 0.95), specificity of 0.91 (0.88, 0.93), area under the curve 0.939 (95% confidence region for sensitivity at a given specificity: 0.904, 0.946), and a positive predictive value of 45%. CONCLUSIONS: The 1-h PG of ≥11.6 mmol/L during OGTT has a good sensitivity and specificity for detecting type 2 diabetes. Prescreening with a diabetes-specific risk calculator to identify high-risk individuals is suggested to decrease the proportion of false-positive cases. Studies including other ethnic groups and assessing complication risk are warranted.
  •  
3.
  • Kettunen, Jarno L.T., et al. (författare)
  • Human Physiology of Genetic Defects Causing Beta-cell Dysfunction
  • 2020
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836. ; 432:5, s. 1579-1598
  • Forskningsöversikt (refereegranskat)abstract
    • The last decade has revealed hundreds of genetic variants associated with type 2 diabetes, many especially with insulin secretion. However, the evidence for their single or combined effect on beta-cell function relies mostly on genetic association of the variants or genetic risk scores with simple traits, and few have been functionally fully characterized even in cell or animal models. Translating the measured traits into human physiology is not straightforward: none of the various indices for beta-cell function or insulin sensitivity recapitulates the dynamic interplay between glucose sensing, endogenous glucose production, insulin production and secretion, insulin clearance, insulin resistance—to name just a few factors. Because insulin sensitivity is a major determinant of physiological need of insulin, insulin secretion should be evaluated in parallel with insulin sensitivity. On the other hand, multiple physiological or pathogenic processes can either mask or unmask subtle defects in beta-cell function. Even in monogenic diabetes, a clearly pathogenic genetic variant can result in different phenotypic characteristics—or no phenotype at all. In this review, we evaluate the methods available for studying beta-cell function in humans, critically examine the evidence linking some identified variants to a specific beta-cell phenotype, and highlight areas requiring further study.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy