SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tysklind Mats) ;pers:(Frankki Sofia)"

Sökning: WFRF:(Tysklind Mats) > Frankki Sofia

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Frankki, Sofia, et al. (författare)
  • Mobility of Chloroaromatic Compounds in Soil: Case Studies of Swedish Chlorophenol-contaminated Sawmill Sites
  • 2007
  • Ingår i: AMBIO: A Journal of the Human Environment. ; 36:6, s. 452–7-
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper summarizes recent studies on the environmental fate of chloroaromatic compounds in chlorophenol (CP)-contaminated soil and groundwater at Swedish sawmill sites. Relative proportions of CPs, polychlorinated phenoxy phenols (PCPPs), polychlorinated diphenyl ethers (PCDEs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) were determined in preservatives, particulate organic matter (POM), dissolved organic matter (DOM), groundwater, and particles filtered from groundwater. All compound classes were found in the different compartments. The fraction of PCPPs, PCDEs, PCDDs, and PCDFs had increased in the soil samples relative to the proportions in the preservatives. This increase showed correlation with the hydrophobicity, that is, PCDDs had the largest increase. Similar correlation was found between hydrophobicity and the importance of partitioning to POM over DOM. The more water soluble compound group, CP, was found equally distributed between POM and DOM. For PCPPs, PCDEs, PCDDs, and PCDFs, the relative partitioning to POM increased with increased hydrophobicity. Despite the relative partitioning towards POM, compared with DOM, cotransport with DOM and suspended colloidal fractions was found to substantially increase the transport of these compounds in the groundwater samples.
  •  
2.
  • Frankki, Sofia, et al. (författare)
  • Partitioning of chloroaromatic compounds between the aqueous phase and dissolved and particulate soil organic matter at chlorophenol contaminated sites
  • 2007
  • Ingår i: Environmental Pollution. - : Elsevier BV. - 0269-7491. ; 148:1, s. 182-90
  • Tidskriftsartikel (refereegranskat)abstract
    • The retention and mobility of hydrophobic organic contaminants (HOCs) in soil is mainly determined by hydrophobic partitioning to dissolved and particulate organic matter (DOM and POM, respectively). The aqueous phase, DOM, and POM fractions were extracted and separated from soils at three sites contaminated with technical chlorophenol formulations. Concentrations of chlorophenols (CP), polychlorinated phenoxyphenols (PCPP), polychlorinated diphenyl ethers (PCDE) and polychlorinated dibenzo-p-dioxins and furans (PCDD/F) were determined. The partitioning to POM, in relation to DOM, increased in all three soils with increasing hydrophobicity in the order CP < PCPP PCDE PCDF < PCDD. Differences in partitioning to DOM (log KDOC) and POM (log KPOC) could not be explained by differences in gross organic C chemistry. Black carbon did not contribute significantly to the sorption of PCDDs, whereas >70% wood fibre in one soil resulted in a decrease of log KPOC of 0.5 units for CPs and PCDDs. We conclude that log KOC for both DOM and POM need to be explicitly determined when the retention and mobility of HOCs is described and modelled in soils.Increasing hydrophobicity of organic compounds increases the partitioning to particulate natural organic matter relative to dissolved natural organic matter.
  •  
3.
  •  
4.
  • Frankki, Sofia, et al. (författare)
  • Partitioning of CPs, PCDEs, and PCDD/Fs between particulate and experimentally
  • 2006
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 40:21, s. 6668-73
  • Tidskriftsartikel (refereegranskat)abstract
    • We determined the distribution of hydrophobic organic contaminants (HOCs) to fractions of natural organic matter in a soil contaminated by chlorophenol wood preservatives more than 30 years ago. The concentration of dissolved organic matter (DOM) was enhanced in soil suspensions by raising pH to 6.8-9.1. After 48 h of desorption/equilibration, the DOM fraction was separated from the particulate organic matter (POM) of the soil by filtration. In the next step, DOM was flocculated by Al-nitrate, and free concentrations of HOCs were determined in the aqueous phase. The HOCs associated with DOM and POM were extracted with toluene. No significant differences in gross carbon chemistry were detected between DOM and POM, using X-ray photoelectron spectroscopy (XPS). Normalized to organic C, chlorophenols (CPs) showed a similar degree of partitioning between DOM and POM, whereas the partitioning of polychlorinated diphenyl ethers (PCDEs), polychlorinated dibenzo-p-dioxins, and furans (PCDD/Fs) was highly shifted toward POM. The partitioning to POM, relative to DOM, increased in the order PCDE < PCDF < PCDD, reflecting the hydrophobicity of the compounds.
  •  
5.
  • Frankki, Sofia, et al. (författare)
  • Partitioning of CPs, PCDEs, and PCDD/Fs between particulate and experimentally enhanced dissolved natural organic matter in a contaminated soil.
  • 2006
  • Ingår i: Environmental Science and Technology. - : American Chemical Society. - 0013-936X .- 1520-5851. ; 40:21, s. 6668-73
  • Tidskriftsartikel (refereegranskat)abstract
    • We determined the distribution of hydrophobic organic contaminants (HOCs) to fractions of natural organic matter in a soil contaminated by chlorophenol wood preservatives more than 30 years ago. The concentration of dissolved organic matter (DOM) was enhanced in soil suspensions by raising pH to 6.8-9.1. After 48 h of desorption/equilibration, the DOM fraction was separated from the particulate organic matter (POM) of the soil by filtration. In the next step, DOM was flocculated by Al-nitrate, and free concentrations of HOCs were determined in the aqueous phase. The HOCs associated with DOM and POM were extracted with toluene. No significant differences in gross carbon chemistry were detected between DOM and POM, using X-ray photoelectron spectroscopy (XPS). Normalized to organic C, chlorophenols (CPs) showed a similar degree of partitioning between DOM and POM, whereas the partitioning of polychlorinated diphenyl ethers (PCDEs), polychlorinated dibenzo-p-dioxins, and furans (PCDD/Fs) was highly shifted toward POM. The partitioning to POM, relative to DOM, increased in the order PCDE < PCDF < PCDD, reflecting the hydrophobicity of the compounds.
  •  
6.
  • Jonsson, Sofia, 1973-, et al. (författare)
  • Comparison of Fenton's Reagent and Ozone Oxidation of Polycyclic Aromatic Hydrocarbons in Aged Contaminated Soils
  • 2006
  • Ingår i: Journal of Soils and Sediments. - Berlin : Springer. - 1614-7480 .- 1439-0108. ; 6:4, s. 208-214
  • Tidskriftsartikel (refereegranskat)abstract
    • Background, Aim and Scope: Polycyclic aromatic hydrocarbons (PAHs) are formed as a result of incomplete combustion and are among the most frequently occurring contaminants in soils and sediments. PAHs are of great environmental concern due to their ubiquitous nature and toxicological properties. Consequently, extensive research has been conducted into the development of methods to remediate soils contaminated with PAHs. Fenton's reagent or ozone is the most commonly studied chemical oxidation methods. However, the majority of remediation studies use soils that have been artificially contaminated with either one or a limited number of PAH compounds in the laboratory. Hence, it is essential to extend such studies to soils contaminated with multiple PAHs under field conditions. Objectives. The objective of this study is to investigate the capacity of Fenton's reagent and ozone to degrade PAHs in soils. The soils have been collected from a number of different industrial sites and, therefore, will have been exposed to different PAH compounds in varying concentrations over a range of time periods. The capacity of Fenton's reagent and ozone to degrade PAHs in industrially contaminated soils is compared to results obtained in studies using soils artificially contaminated with PAHs in the laboratory. Materials and Methods: Nine soil samples, contaminated with PAHs, were collected from five different industrial sites in Sweden. For the Fenton's reagent procedure, the pH of the soil slurry samples was adjusted to pH 3 and they were kept at a constant temperature of 70ºC whilst H2O2 was added. For the ozone procedure, soil samples were mixed with 50% water and 50% ethanol and kept at a constant temperature of 45 ºC. Ozone was then continually introduced to each soil sample over a period of four hours. Following the Fenton's reagent and ozone oxidation procedures, the samples were filtered to isolate the solid phase, which was then extracted using pressurized liquid extraction (PLE). The sample extracts were cleaned up using open columns and then analysed by gas chromatography-mass spectrometry (GC-MS). Results: The relative abundance of the detected PAHs varied between soils, associated with different industries. For example, low molecular weight (LMW) PAHs were more abundant in soil samples collected from wood impregnation sites and high overall PAH degradation efficiencies were observed in soils originating from these sites. In the contaminated soils studied, PAHs were more effectively degraded using Fenton's reagent (PAH degradation efficiency of 40-86%) as opposed to ozone (PAH degradation efficiency of 10-70%). LMW PAHs were more efficiently degraded, using ozone as the oxidizing agent, whereas the use of Fenton's reagent resulted in a more even degradation pattern for PAHs with two through six fused aromatic rings. Discussion: The degradation efficiency for both methods was largely dependent on the initial PAH concentration in the soil sample, with higher degradation observed in highly polluted soils. LMW PAHs are more susceptible to degradation than high molecular weight (HMW) PAHs. As a result of this the relative abundance of large (often carcinogenic) PAHs increased after chemical oxidation treatment, particularly after ozone treatment. Repeated Fenton's reagent treatment did not result in any further degradation of soil PAHs, indicating that residual soil PAHs are strongly sorbed. The effectiveness of the two oxidation treatment approaches differed between industrial sites, thus highlighting the importance of further research into the influence of soil properties on the sorption capacity of PAHs. Conclusions: This study demonstrates that the degree to which chemical oxidation techniques can degrade soil bound PAHs chemical degradation is highly dependent on both the concentration of PAHs in the soils and the compounds present, i.e. the various PAH profiles. Therefore, similarities in the PAH degradation efficiencies in the nine soil samples studied were observed with the two chemical oxidation methods used. However, the degradation performance of Fenton's reagent and ozone differed between the two methods. Overall, Fenton's reagent achieved the highest total PAH degradation due to stronger oxidation conditions. LMW PAHs showed higher susceptibility to oxidation, whereas high molecular weight (HMW) PAHs appear to be strongly sorbed to the soils and therefore less chemically available for oxidation. This study highlights the importance of including soils collected from a range of contaminated sites in remediation studies. Such soil samples will contain PAH contaminants of varying concentrations, chemical and physical properties, and have been aged under field conditions. In addition to the chemical and physical properties of the soils, these factors will all influence the chemical availability of PAHs to oxidation. Recommendations and Perspectives: We recommend including aged contaminated soils in chemical degradation studies. In future chemical remediation work, we intend to investigate the potential influence of the chemical and physical properties of PAHs and soil parameters potential influence on the chemical oxidation efficiency in aged contaminated soils. Due to the vast number of contaminated sites there is a great need of efficient remediation methods throughout the world. This study shows the difficulties which may be experienced when applying remediation methods to a variation of contaminated sites.
  •  
7.
  • Jonsson, Sofia, 1973-, et al. (författare)
  • Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent : a multivariate evaluation of the importance of soil characteristics and PAH properties
  • 2007
  • Ingår i: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 149:1, s. 86-96
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigated how the chemical degradability of polycyclic aromatic hydrocarbons (PAHs) in aged soil samples from various contaminated sites is influenced by soil characteristics and by PAH physico-chemical properties. The results were evaluated using the multivariate statistical tool, partial least squares projections to latent structures (PLS). The PAH-contaminated soil samples were characterised (by pH, conductivity, organic matter content, oxide content, particle size, specific surface area, and the time elapsed since the contamination events, i.e. age), and subjected to relatively mild, slurry-phase Fenton's reaction conditions. In general, low molecular weight PAHs were degraded to a greater extent than large, highly hydrophobic variants. Anthracene, benzo(a)pyrene, and pyrene were more susceptible to degradation than other, structurally similar, PAHs; an effect attributed to the known susceptibility of these compounds to reactions with hydroxyl radicals. The presence of organic matter and the specific surface area of the soil were clearly negatively correlated with the degradation of bi- and tri-cyclic PAHs, whereas the amount of degraded organic matter correlated positively with the degradation of PAHs with five or six fused rings. This was explained by enhanced availability of the larger PAHs, which were released from the organic matter as it degraded. Our study shows that sorption of PAHs is influenced by a combination of soil characteristics and physico-chemical properties of individual PAHs. Multivariate statistical tools have great potential for assessing the relative importance of these parameters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy