SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Urrutia Cordero Pablo) ;pers:(Soares Margarida)"

Sökning: WFRF:(Urrutia Cordero Pablo) > Soares Margarida

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Urrutia Cordero, Pablo, et al. (författare)
  • Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms
  • 2017
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 62:11, s. 1869-1878
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Globally, freshwater ecosystems are warming at unprecedented rates and northern temperate lakes are simultaneously experiencing increased runoff of humic substances (brownification), with little known consequences for future conservation of biodiversity and ecosystem functioning.2. We employed an outdoor mesocosm experiment during spring and summer to investigate the combined effects of gradually increasing warming and brownification perturbations on the phytoplankton community structure (biodiversity and composition) and functioning (biomass).3. While we did not observe overall significant treatment effects on total phytoplankton biomasses, we show that predicted increases in warming and brownification can reduce biodiversity considerably, occasionally up to 90% of Shannon diversity estimates. Our results demonstrate that the loss of biodiversity is driven by the dominance of mixotrophic algae (Dinobryon and Cryptomonas), whereas several other phytoplankton taxa may be temporarily displaced from the community, including Cyclotella, Desmodesmus, Monoraphidium, Tetraedron, Nitzschia and Golenkinia.4. The observed loss of biodiversity coincided with an increase in bacterial production providing resources for potential mixotrophs along the gradient of warming and brownification. This coupling between bacterial production and mixotrophs was likely a major cause behind the competitive displacement of obligate phototrophs and supports evidence for the importance of consumer-prey dynamics in shaping environmental impacts on phytoplankton communities.5. We conclude that warming and brownification are likely to cause a profound loss of biodiversity by indirectly affecting competitive interactions among phytoplankton taxa. Importantly, our results did not show an abrupt loss of biodiversity; instead the reduction in taxa richness levelled off after exceeding a threshold of warming and brownification. These results exemplify the complex nonlinear responses of biodiversity to environmental perturbations and provide further insights for predicting biodiversity patterns to the future warming and brownification of freshwaters.
  •  
2.
  • Wilken, Susanne, et al. (författare)
  • Primary producers or consumers? : Increasing phytoplankton bacterivory along a gradient of lake warming and browning
  • 2018
  • Ingår i: Limnology and Oceanography. - : WILEY. - 0024-3590 .- 1939-5590. ; 63:Suppl. 1, s. S142-S155
  • Tidskriftsartikel (refereegranskat)abstract
    • Eukaryotic phytoplankton form the basis of aquatic food webs and play a key role in the global carbon cycle. Many of these evolutionarily diverse microalgae are also capable of feeding on other microbes, and hence simultaneously act both as primary producers and consumers. The net ecosystem impact of such mixotrophs depends on their nutritional strategy which is likely to alter with environmental change. Many temperate lakes are currently warming at unprecedented rates and are simultaneously increasing in water color (browning) due to increased run-off of humic substances. We hypothesized that the resulting reduction in light intensity and increased bacterial abundances would favor mixotrophic phytoplankton over obligate autotrophs, while higher temperatures might boost their rates of bacterivory. We tested these hypotheses in a mesocosm experiment simulating a gradient of increasing temperature and water color in temperate shallow lakes as expected to occur over the coming century. Mixotrophs showed a faster increase in abundance under the climate change scenario during spring, when they dominated the phytoplankton community. Furthermore, both bacterial abundances and rates of phytoplankton bacterivory increased under future climate conditions. Bacterivory contributed significantly to phytoplankton resource acquisition under future climate conditions, while remaining negligible throughout most of the season in treatments resembling today's conditions. Hence, to our knowledge, we here provide the first evidence for an increasing importance of bacterivory by phytoplankton in future temperate shallow lakes. Such a change in phytoplankton nutritional strategies will likely impact biogeochemical cycles and highlights the need to conceptually integrate mixotrophy into current ecosystem models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Hansson, Lars-Anders (2)
Urrutia-Cordero, Pab ... (2)
Ekvall, Mattias K. (2)
Wilken, Susanne (2)
Ratcovich, Jens (2)
visa fler...
van Donk, Ellen (1)
Zhang, Huan (1)
visa färre...
Lärosäte
Uppsala universitet (2)
Lunds universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy