SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Urrutia Cordero Pablo) srt2:(2022);mspu:(article)"

Sökning: WFRF:(Urrutia Cordero Pablo) > (2022) > Tidskriftsartikel

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hintz, William D., et al. (författare)
  • Current water quality guidelines across North America and Europe do not protect lakes from salinization
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization—indicated as elevated chloride (Cl−) concentration—will affect lake food webs and if two of the lowest Cl− thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl− thresholds established in Canada (120 mg Cl−/L) and the United States (230 mg Cl−/L) and throughout Europe where Cl− thresholds are generally higher. For instance, at 73% of our study sites, Cl− concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl− thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl− thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.
  •  
2.
  • Klatt, Björn K., et al. (författare)
  • A trophic cascade causes unexpected ecological interactions across the aquatic–terrestrial interface under extreme weather
  • 2022
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 2022:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Trophic cascades in the aquatic environment constitute important mechanisms for improving water quality. However, how the presence or non-presence of these trophic cascades may affect interactions across the aquatic–terrestrial interface remains poorly investigated. Pollinators such as bees may be especially vulnerable to changes in water resource quality induced by trophic cascades. Understanding how aquatic trophic cascades affect bees and pollination becomes even more pressing under ongoing climate change due to increased physiological demands for water under extreme weather events. In a novel field experiment combining terrestrial and aquatic mesocosms, we aimed to test how changes in water quality induced by an aquatic trophic cascade affected foraging and growth of bumblebee colonies as well as foraging of solitary bees. While we expected fish predation to reduce top–down control of zooplankton on phytoplankton and thereby, indirectly, induce increased growth of toxic cyanobacteria, we instead found the trophic cascade to induce the formation of algal surface mats that bumblebees used to access water under a severe heat wave and drought. This access to water was associated with higher bumblebee colony reproductive success, growth and weight compared to control colonies with no trophic cascade induced (and hence no algal surface mats). We also found marginal but non-significant effects on oilseed rape yield, but surprisingly with higher yields in the control treatment where bumblebees could not access water. Our results provide new insights on how aquatic trophic cascades can lead to unpredicted ecological interactions across the aquatic–terrestrial interface facilitated by climate change. Our study highlights the importance of water for the fitness of terrestrial ecosystem service providers under altered environmental conditions.
  •  
3.
  • Urrutia Cordero, Pablo, et al. (författare)
  • Integrating multiple dimensions of ecological stability into a vulnerability framework
  • 2022
  • Ingår i: Journal of Ecology. - : John Wiley & Sons. - 0022-0477 .- 1365-2745. ; 110:2, s. 374-386
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological stability encompasses multiple dimensions of functional and compositional responses to environmental change. Though no single stability dimension used in isolation can fully reflect the overall response to environmental change, a common vulnerability assessment that integrates simultaneously across multiple stability components is highly desirable for ecological risk assessment. We develop both functional and compositional counterparts of a novel, integrative metric of overall ecological vulnerability (OEV). We test the framework with data from a modularized experiment replicated in five lakes over two seasons, examining functional and compositional responses to both pulse and press disturbances across three trophic groups. OEV is measured as the area under the curve integrated over the entire observation period, with the curve delimiting the difference between the disturbance treatment and undisturbed parallel controls, expressed either as the log response ratio of biomass (functional OEV) or community dissimilarity index (compositional OEV). Both, functional and compositional OEV correlated negatively with functional and compositional 'resistance', 'temporal stability' and 'final/extent of recovery' following both pulse and press disturbances, though less so with 'resilience' following a pulse disturbance. We also found a positive correlation between functional and compositional OEV, which reveals the potential to also evaluate the intricate linkage between biodiversity and functional change. Our findings demonstrate that OEV comprises a robust framework to: (a) capture simultaneously multiple functional and compositional stability components, and (b) quantify the functional consequences of biodiversity change. Our results provide the basis for an overarching framework for quantifying the overall vulnerability of ecosystems to environmental change, opening new possibilities for ecological risk assessment and management. Synthesis. Ecological stability comprises multiple dimensions that together encapsulate how ecosystems respond to environmental change. Considering these multiple aspects of stability simultaneously often poses a problem in environmental assessments, which frequently require overarching indicators of risk or vulnerability. While an analysis of multiple dimensions allows for deeper exploration of mechanisms, here we develop and test a new univariate indicator that integrates stability aspects under a broad range of disturbance regimes. Using a modularized experiment in Swedish lakes, we show that this integrative measure captures multiple stability dimensions reflecting compositional and functional vulnerability and their relationships between them.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy