SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vaag A) ;pers:(Groop Leif)"

Sökning: WFRF:(Vaag A) > Groop Leif

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pilgaard, K., et al. (författare)
  • The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men
  • 2009
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 52:7, s. 1298-1307
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the physiological, metabolic and hormonal mechanisms underlying the elevated risk of type 2 diabetes in carriers of TCF7L2 gene. We undertook genotyping of 81 healthy young Danish men for rs7903146 of TCF7L2 and carried out various beta cell tests including: 24 h glucose, insulin and glucagon profiles; OGTT; mixed meal test; IVGTT; hyperglycaemic clamp with co-infusion of glucagon-like peptide (GLP)-1 or glucose-dependent insulinotropic polypeptide (GIP); and a euglycaemic-hyperinsulinaemic clamp combined with glucose tracer infusion to study hepatic and peripheral insulin action. Carriers of the T allele were characterised by reduced 24 h insulin concentrations (p < 0.05) and reduced insulin secretion relative to glucose during a mixed meal test (beta index: p < 0.003), but not during an IVGTT. This was further supported by reduced late-phase insulinotropic action of GLP-1 (p = 0.03) and GIP (p = 0.07) during a 7 mmol/l hyperglycaemic clamp. Secretion of GLP-1 and GIP during the mixed meal test was normal. Despite elevated hepatic glucose production, carriers of the T allele had significantly reduced 24 h glucagon concentrations (p < 0.02) suggesting altered alpha cell function. Elevated hepatic glucose production and reduced insulinotropic effect of incretin hormones contribute to an increased risk of type 2 diabetes in carriers of the rs7903146 risk T allele of TCF7L2.
  •  
2.
  • Arora, G. P., et al. (författare)
  • Insulin secretion and action in North Indian women during pregnancy
  • 2017
  • Ingår i: Diabetic Medicine: A journal of the British Diabetic Association. - : Wiley. - 1464-5491. ; 34:10, s. 1477-1482
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: The relative roles(s) of impaired insulin secretion vs. insulin resistance in the development of gestational diabetes mellitus depend upon multiple risk factors and diagnostic criteria. Here, we explored their relative contribution to gestational diabetes as defined by the WHO 1999 (GDM1999) and adapted WHO 2013 (GDM2013) criteria, excluding the 1-h glucose value, in a high-risk Indian population from Punjab.METHODS: Insulin secretion (HOMA2-B) and insulin action (HOMA2-IR) were assessed in 4665 Indian women with or without gestational diabetes defined by the GDM1999 or adapted GDM2013 criteria.RESULTS: Gestational diabetes defined using both criteria was associated with decreased insulin secretion compared with pregnant women with normal glucose tolerance. Women with gestational diabetes defined by the adapted GDM2013, but not GDM1999 criteria, were more insulin resistant than pregnant women with normal glucose tolerance, and furthermore displayed lower insulin secretion than GDM1999 women. Urban habitat, illiteracy, high age and low BMI were independently associated with reduced insulin secretion, whereas Sikh religion, increasing age and BMI, as well as a family history of diabetes were independently associated with increased insulin resistance.CONCLUSIONS: Gestational diabetes risk factors influence insulin secretion and action in North Indian women in a differential manner. Gestational diabetes classified using the adapted GDM2013 compared with GDM1999 criteria is associated with more severe impairments of insulin secretion and action.
  •  
3.
  • Hatem, Gad, et al. (författare)
  • Mapping the cord blood transcriptome of pregnancies affected by early maternal anemia to identify signatures of fetal programming
  • 2022
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 107:5, s. 1303-1316
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mother and children. Offspring of women with EP anemia often have low birth-weight, the latter being a risk factor for cardiometabolic diseases including type 2 diabetes (T2D) later in life. Mechanisms underlying developmental programming of adult cardiometabolic disease include epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth.METHODS: We leveraged global transcriptome- and accompanying epigenome-wide changes in 48 UCB from newborns of EP-anemic Tanzanian mothers and 50 controls to identify differentially expressed genes (DEG) in UCB exposed to maternal EP-anemia. DEGs were assessed for association with neonatal anthropometry and cord insulin levels. These genes were further studied in expression data from human fetal pancreas and adult islets to understand their role in beta-cell development and/or function.RESULTS: The expression of 137 genes was altered in UCB of newborns exposed to maternal EP anemia. These putative signatures of fetal programming which included the birth-weight locus LCORL, were potentially mediated by epigenetic changes in 27 genes and associated with neonatal anthropometry. Among the DEGs were P2RX7, PIK3C2B, and NUMBL which potentially influence beta-cell development. Insulin levels were lower in EP anemia exposed UCB, supporting the notion of developmental programming of pancreatic beta-cell dysfunction and subsequently increased risk of T2D in offspring of EP anemic mothers.CONCLUSIONS: Our data provide proof-of-concept on distinct transcriptional and epigenetic changes detectable in UCB from newborns exposed to maternal EP anemia.
  •  
4.
  • Kurucz, I, et al. (författare)
  • Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance
  • 2002
  • Ingår i: Diabetes. - 1939-327X. ; 51:4, s. 1102-1109
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress has been ascribed a role in the pathogenesis of diabetes and its complications, and stress proteins have been shown to protect organisms in vitro and in vivo against oxidative stress. To study the putative role of one of the most abundant cytoprotective stress proteins, inducible cytoplasmic 72-kDa-mass heat shock protein (Hsp-72), in the pathogenesis of diabetes, we measured its mRNA concentration in muscle biopsies from six type 2 diabetic patients and six healthy control subjects (protocol 1) as well as in 12 twin pairs discordant for type 2 diabetes and 12 control subjects undergoing a euglycemic-hyperinsulinemic clamp in combination with indirect calorimetry (protocol 2). The amount of Hsp-72 mRNA in muscle was significantly lower in type 2 diabetic patients than in healthy control subjects (in protocol 1: 5.2 +/- 2.2 vs. 53 +/- 32 million copies of Hsp-72 mRNA/mug total RNA, n = 6, P = 0.0039; in protocol 2: 3.2 +/- 3.3 vs. 43 +/- 31 million copies of Hsp-72 mRNA/mug total RNA, n = 12, P = 0.0001). Hsp-72 mRNA levels were also markedly reduced in the nondiabetic co-twins compared with healthy control subjects (5.8 +/- 5.0 vs. 43 +/- 31, n = 12, P = 0.0001), but they were also statistically significantly different from their diabetic co-twins when the difference between the pairs was compared (P = 0.0280). Heat shock protein mRNA content in muscle of examined patients correlated with the rate of glucose uptake and other measures of insulin-stimulated carbohydrate and lipid metabolism. In conclusion, the finding of decreased levels of Hsp-72 mRNA in skeletal muscle of patients with type 2 diabetes and its relationship with insulin resistance raises the question of whether heat shock proteins are involved in the pathogenesis of skeletal muscle insulin resistance in type 2 diabetes.
  •  
5.
  • Parikh, Hemang, et al. (författare)
  • TXNIP regulates peripheral glucose metabolism in humans
  • 2007
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1676. ; 4:5, s. 868-879
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Type 2 diabetes mellitus ( T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. Methods and Findings We combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein ( TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated to total body measures of glucose uptake. Forced expression of TXNIP in cultured adipocytes significantly reduced glucose uptake, while silencing with RNA interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming that the gene product is also a regulator of glucose uptake. TXNIP expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. Conclusions TXNIP regulates both insulin-dependent and insulin- independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic beta-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM.
  •  
6.
  • Storgaard, H, et al. (författare)
  • Genetic and nongenetic determinants of skeletal muscle glucose transporter 4 messenger ribonucleic acid levels and insulin action in twins
  • 2006
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 91:2, s. 702-708
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Insulin-stimulated glucose uptake in skeletal muscle is mediated through translocation of the insulin-sensitive glucose transporter 4 ( GLUT4)-containing vesicles to the plasma membrane. Thus, skeletal muscle GLUT4 content plays an important role in whole-body insulin sensitivity. Objectives: The objectives of this study were 1) to examine the relative impact of genetic vs. environmental factors on skeletal muscle GLUT4 mRNA expression using biometric modeling, and 2) to identify factors influencing the expression of GLUT4 and insulin-stimulated whole-body metabolism. Design: We measured GLUT4 mRNA expression in biopsies from young and elderly monozygotic (MZ) and dizygotic (DZ) twins before and during a 2-h hyperinsulinemic euglycemic clamp including 3-H-3-tritiated glucose and indirect calorimetry. Participants: A random sample of young (22-31 yr; n = 89) and elderly (57 - 66 yr; n = 69) same sex MZ and DZ twin pairs identified through the Danish Twin Register were studied. Results: We found a major genetic component in the control of basal and insulin-stimulated GLUT4 mRNA expression in young and elderly twins. GLUT4 gene expression increased upon insulin stimulation in both young and elderly twins. Multiple regression analysis revealed that both basal and insulin-stimulated GLUT4 mRNA expressions were positively related to birth weight and total body aerobic capacity and were higher in MZ vs. DZ twins as well as in males vs. females. Both basal and insulin-stimulated expressions of GLUT4 were independently and significantly related to whole-body in vivo insulin action, nonoxidative glucose metabolism, and glucose oxidation. Conclusion: We show that skeletal muscle GLUT4 gene expression in twins is significantly and independently related to glucose metabolism and is determined by both genetic and nongenetic factors, including zygosity and birth weight.
  •  
7.
  • Arora, Geeti P, et al. (författare)
  • Phenotypic and genotypic differences between Indian and Scandinavian women with gestational diabetes mellitus
  • 2019
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 286:2, s. 192-206
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Gestational diabetes mellitus (GDM) is a transient form of diabetes characterized by impaired insulin secretion and action during pregnancy. Population-based differences in prevalence exist which could be explained by phenotypic and genetic differences. The aim of this study was to examine these differences in pregnant women from Punjab, India and Scandinavia.METHODS: 85 GDM/T2D loci in European and/or Indian populations from previous studies were assessed for association with GDM based on Swedish GDM criteria in 4018 Punjabi Indian and 507 Swedish pregnant women. Selected loci were replicated in Scandinavian cohorts, Radiel (N=398, Finnish), STORK/STORK-G (N=780, Norwegian).RESULTS: Punjabi Indian women had higher GDM prevalence, lower insulin secretion and better insulin sensitivity than Swedish women. There were significant frequency differences of GDM/T2D risk alleles between both populations. rs7178572 at HMG20A, previously associated with GDM in South Indian and European women was replicated in North Indian women. The T2D risk SNP rs11605924 in the CRY2 gene was associated with increased GDM risk in Scandinavian but decreased risk in Punjabi Indian women. No other overlap was seen between GDM loci in both populations.CONCLUSIONS: GDM is more common in Indian than Swedish women, which partially can be attributed to differences in insulin secretion and action. There was marked heterogeneity in the GDM phenotypes between the populations which could only partially be explained by genetic differences. This article is protected by copyright. All rights reserved.
  •  
8.
  • Huang, Xudong, et al. (författare)
  • Impaired cathepsin L gene expression in skeletal muscle is associated with type 2 diabetes.
  • 2003
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 52:9, s. 2411-2418
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify abnormally expressed genes associated with muscle insulin resistance or type 2 diabetes, we screened the mRNA populations using cDNA differential display combined with relative RT-PCR analysis from muscle biopsies of diabetes-prone C57BL/6J and diabetes-resistant NMRI mice fed with a high-fat or normal diet for 3 or 15 months. Six abnormally expressed genes were isolated from the mice after a 3-month fat feeding; one of them was cathepsin L. No significant difference in mRNA levels of these genes was observed between fat- and normal-diet conditions in either strains. However, cathepsin L mRNA levels in muscle were higher in normal diet–fed C57BL/6J mice compared with normal diet–fed NMRI mice at 3 months (0.72 ± 0.04 vs. 0.51 ± 0.04 relative units, P &lt; 0.01, n = 8–10) and at 15 months (0.41 ± 0.05 vs. 0.27 ± 0.04 relative units, P = 0.01, n = 9–10). Further, cathepsin L mRNA levels in muscle correlated inversely with plasma glucose in both strains regardless of diets at 3 (r = −0.49, P &lt; 0.01, n = 31) and 15 (r = −0.42, P = 0.007, n = 39) months. To study whether cathepsin L plays a role in human diabetes, we measured cathepsin L mRNA levels in muscle biopsies taken before and after an insulin clamp from 12 monozygotic twin pairs discordant for type 2 diabetes and from 12 control subjects. Basal cathepsin L mRNA levels were not significantly different between the study groups. Insulin infusion increased cathepsin L mRNA levels in control subjects from 1.03 ± 0.30 to 1.90 ± 0.32 relative units (P = 0.03). Postclamp cathepsin L mRNA levels were lower in diabetic twins but similar in nondiabetic twins compared with control subjects (0.66 ± 0.22, 1.16 ± 0.18 vs. 1.38 ± 0.21 relative units, P &lt; 0.02, NS, respectively). Further, postclamp cathepsin L mRNA levels were correlated with insulin-mediated glucose uptake (r = 0.37, P = 0.03), particularly, with glucose oxidation (r = 0.37, P = 0.03), and fasting glucose concentrations (r = −0.45, P &lt; 0.01) across all three study groups. In conclusion, muscle cathepsin L gene expression is increased in diabetes-prone mice and related to glucose tolerance. In humans, insulin-stimulated cathepsin L expression in skeletal muscle is impaired in diabetic but not in nondiabetic monozygotic twins, suggesting that the changes may be secondary to impaired glucose metabolism.
  •  
9.
  • Kristensen, Peter L., et al. (författare)
  • Impact of the tcf7l2 genotype on risk of hypoglycaemia and glucagon secretion during hypoglycaemia
  • 2016
  • Ingår i: Endocrine Connections. - 2049-3614. ; 5:6, s. 53-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: In healthy carriers of the T allele of the transcription factor 7-like 2 (TCF7L2), fasting plasma glucagon concentrations are lower compared with those with the C allele. We hypothesised that presence of the T allele is associated with a diminished glucagon response during hypoglycaemia and a higher frequency of severe hypoglycaemia (SH) in type 1 diabetes (T1DM). Material and methods: This is a post hoc study of an earlier prospective observational study of SH and four mechanistic studies of physiological responses to hypoglycaemia. 269 patients with T1DM were followed in a one-year observational study. A log-linear negative binomial model was applied with events of SH as dependent variable and TCF7L2 alleles as explanatory variable. In four experimental studies including 65 people, TCF7L2 genotyping was done and plasma glucagon concentration during experimental hypoglycaemia was determined. Results: Incidences of SH were TT 0.54, TC 0.98 and CC 1.01 episodes per patient-year with no significant difference between groups. During experimental hypoglycaemia, the TCF7L2 polymorphism did not influence glucagon secretion. Discussion: Patients with T1DM carrying the T allele of the TCF7L2 polymorphism do not exhibit diminished glucagon response during hypoglycaemia and are not at increased risk of severe hypoglycaemia compared with carriers of the C allele.
  •  
10.
  • Ling, Charlotte, et al. (författare)
  • Impact of the peroxisome proliferator activated receptor-gamma coactivator-1 beta (PGC-1 beta) Ala203Pro polymorphism on in vivo metabolism, PGC-1 beta expression and fibre type composition in human skeletal muscle
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:8, s. 1615-1620
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Peroxisome proliferator activated receptor-gamma coactivator-lp (PGC-1 beta, also known as PPARGCIB) expression is reduced in skeletal muscle from patients with type 2 diabetes mellitus and in elderly subjects. Ala203Pro, a common variant in the PGC-1 beta gene is associated with obesity. The aim of this study was to investigate whether the PGC-1 beta Ala203Pro polymorphism influences the age-related decline in skeletal muscle PGC-1 beta expression, in vivo metabolism and markers for muscle fibre type composition. Materials and methods The PGC-1 beta Ala203Pro polymerphism was genotyped in 110 young (age 28.0 +/- 1.9 years) and 86 elderly (age 62.4 +/- 2.0 years) twins and related to muscle PGC-1 beta expression, in vivo metabolism and markers for fibre type composition. Results Insulin-stimulated non-oxidative glucose metabolism (NOGM; p=0.025) and glycolytic flux rate (GF; p=0.026) were reduced in young Ala/Ala carriers compared with carriers of a 203Pro allele. In addition, a regression analysis, correcting for covariates, showed that the PGC-1 beta 203Pro allele was positively related to insulin-stimulated NOGM and GF in the young twins. While muscle expression of PGC-1 beta was reduced in elderly compared with young carriers of the Ala/Ala genotype (p <= 0.001), there was no significant age-related decline in PGC-1 beta expression in carriers of the 203Pro allele (p >= 0.4). However, a regression analysis, correcting for covariates, showed that only age was significantly related to muscle PGC-1 beta expression. Finally, PGC-1 beta expression correlated positively with markers for oxidative fibres in human muscle. Conclusions/interpretation This study suggests that young carriers of a PGC-1 beta 203Pro allele have enhanced insulin-stimulated glucose metabolism and may be protected against an age-related decline in PGC-1 beta expression in muscle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy