SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vaag A.) ;pers:(Ling Charlotte)"

Sökning: WFRF:(Vaag A.) > Ling Charlotte

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fraga, MF, et al. (författare)
  • Epigenetic differences arise during the lifetime of monozygotic twins
  • 2005
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 102:30, s. 10604-10609
  • Tidskriftsartikel (refereegranskat)abstract
    • Monozygous twins share a common genotype. However, most monozygotic twin pairs are not identical; several types of phenotypic discordance may be observed, such as differences in susceptibilities to disease and a wide range of anthropomorphic features. There are several possible explanations for these observations, but one is the existence of epigenetic differences. To address this issue, we examined the global and locus-specific differences in DNA methylation and histone acetylation of a large cohort of monozygotic twins. We found that, although twins are epigenetically indistinguishable during the early years of life, older monozygous twins exhibited remarkable differences in their overall content and genomic distribution of 5-methylcytosine DNA and histone acetylation, affecting their gene-expression portrait. These findings indicate how an appreciation of epigenetics is missing from our understanding of how different phenotypes can be originated from the same genotype.
  •  
2.
  • Cardona, Alexia, et al. (författare)
  • Epigenome-wide association study of incident type 2 diabetes in a British population : EPIC-Norfolk study
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:12, s. 2315-2326
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetic changes may contribute substantially to risks of diseases of aging. Previous studies reported seven methylation variable positions (MVPs) robustly associated with incident type 2 diabetes mellitus (T2DM). However, their causal roles in T2DM are unclear. In an incident T2DM case-cohort study nested within the populationbased European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort, we used whole blood DNA collected at baseline, up to 11 years before T2DM onset, to investigate the role of methylation in the etiology of T2DM. We identified 15 novel MVPs with robust associations with incident T2DM and robustly confirmed three MVPs identified previously (near to TXNIP, ABCG1, and SREBF1). All 18 MVPs showed directionally consistent associations with incident and prevalent T2DM in independent studies. Further conditional analyses suggested that the identified epigenetic signals appear related to T2DM via glucose and obesityrelated pathways acting before the collection of baseline samples.We integrated genome-wide genetic data to identify methylation-associated quantitative trait loci robustly associated with 16 of the 18 MVPs and found one MVP, cg00574958 at CPT1A, with a possible direct causal role in T2DM. None of the implicated genes were previously highlighted by genetic association studies, suggesting that DNA methylation studies may reveal novel biological mechanisms involved in tissue responses to glycemia.
  •  
3.
  • Davegårdh, Cajsa, et al. (författare)
  • Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects
  • 2017
  • Ingår i: BMC Medicine. - : Springer Science and Business Media LLC. - 1741-7015. ; 15:1, s. 1-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. Methods: We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. Results: We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. Conclusions: Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity.
  •  
4.
  • Jacobsen, S. C., et al. (författare)
  • Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men
  • 2012
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 55:12, s. 3341-3349
  • Tidskriftsartikel (refereegranskat)abstract
    • Energy-dense diets that are high in fat are associated with a risk of metabolic diseases. The underlying molecular mechanisms could involve epigenetics, as recent data show altered DNA methylation of putative type 2 diabetes candidate genes in response to high-fat diets. We examined the effect of a short-term high-fat overfeeding (HFO) diet on genome-wide DNA methylation patterns in human skeletal muscle. Skeletal muscle biopsies were obtained from 21 healthy young men after ingestion of a short-term HFO diet and a control diet, in a randomised crossover setting. DNA methylation was measured in 27,578 CpG sites/14,475 genes using Illumina's Infinium Bead Array. Candidate gene expression was determined by quantitative real-time PCR. HFO introduced widespread DNA methylation changes affecting 6,508 genes (45%), with a maximum methylation change of 13.0 percentage points. The HFO-induced methylation changes were only partly and non-significantly reversed after 6-8 weeks. Alterations in DNA methylation levels primarily affected genes involved in inflammation, the reproductive system and cancer. Few gene expression changes were observed and these had poor correlation to DNA methylation. The genome-wide DNA methylation changes induced by the short-term HFO diet could have implications for our understanding of transient epigenetic regulation in humans and its contribution to the development of metabolic diseases. The slow reversibility suggests a methylation build-up with HFO, which over time may influence gene expression levels.
  •  
5.
  • Storgaard, H, et al. (författare)
  • Genetic and nongenetic determinants of skeletal muscle glucose transporter 4 messenger ribonucleic acid levels and insulin action in twins
  • 2006
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 91:2, s. 702-708
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Insulin-stimulated glucose uptake in skeletal muscle is mediated through translocation of the insulin-sensitive glucose transporter 4 ( GLUT4)-containing vesicles to the plasma membrane. Thus, skeletal muscle GLUT4 content plays an important role in whole-body insulin sensitivity. Objectives: The objectives of this study were 1) to examine the relative impact of genetic vs. environmental factors on skeletal muscle GLUT4 mRNA expression using biometric modeling, and 2) to identify factors influencing the expression of GLUT4 and insulin-stimulated whole-body metabolism. Design: We measured GLUT4 mRNA expression in biopsies from young and elderly monozygotic (MZ) and dizygotic (DZ) twins before and during a 2-h hyperinsulinemic euglycemic clamp including 3-H-3-tritiated glucose and indirect calorimetry. Participants: A random sample of young (22-31 yr; n = 89) and elderly (57 - 66 yr; n = 69) same sex MZ and DZ twin pairs identified through the Danish Twin Register were studied. Results: We found a major genetic component in the control of basal and insulin-stimulated GLUT4 mRNA expression in young and elderly twins. GLUT4 gene expression increased upon insulin stimulation in both young and elderly twins. Multiple regression analysis revealed that both basal and insulin-stimulated GLUT4 mRNA expressions were positively related to birth weight and total body aerobic capacity and were higher in MZ vs. DZ twins as well as in males vs. females. Both basal and insulin-stimulated expressions of GLUT4 were independently and significantly related to whole-body in vivo insulin action, nonoxidative glucose metabolism, and glucose oxidation. Conclusion: We show that skeletal muscle GLUT4 gene expression in twins is significantly and independently related to glucose metabolism and is determined by both genetic and nongenetic factors, including zygosity and birth weight.
  •  
6.
  • Gillberg, Linn, et al. (författare)
  • Adipose tissue transcriptomics and epigenomics in low birthweight men and controls : role of high-fat overfeeding
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:4, s. 799-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Individuals who had a low birthweight (LBW) are at an increased risk of insulin resistance and type 2 diabetes when exposed to high-fat overfeeding (HFO). We studied genome-wide mRNA expression and DNA methylation in subcutaneous adipose tissue (SAT) after 5 days of HFO and after a control diet in 40 young men, of whom 16 had LBW. Methods mRNA expression was analysed using Affymetrix Human Gene 1.0 ST arrays and DNA methylation using Illumina 450K BeadChip arrays. Results We found differential DNA methylation at 53 sites in SAT from LBW vs normal birthweight (NBW) men (false discovery rate < 5%), including sites in the FADS2 and CPLX1 genes previously associated with type 2 diabetes. When we used reference-free cell mixture adjustments to potentially adjust for cell composition, 4,323 sites had differential methylation in LBW vs NBW men. However, no differences in SAT gene expression levels were identified between LBW and NBW men. In the combined group of all 40 participants, 3,276 genes (16.5%) were differentially expressed in SAT after HFO (false discovery rate < 5%) and there was no difference between LBW men and controls. The most strongly upregulated genes were ELOVL6, FADS2 and NNAT; in contrast, INSR, IRS2 and the SLC27A2 fatty acid transporter showed decreased expression after HFO. Interestingly, SLC27A2 expression correlated negatively with diabetes- and obesity-related traits in a replication cohort of 142 individuals. DNA methylation at 652 CpG sites (including in CDK5, IGFBP5 and SLC2A4) was altered in SAT after overfeeding in this and in another cohort. Conclusions/interpretation Young men who had a LBW exhibit epigenetic alterations in their adipose tissue that potentially influence insulin resistance and risk of type 2 diabetes. Short-term overfeeding influences gene transcription and, to some extent, DNA methylation in adipose tissue; there was no major difference in this response between LBW and control participants.
  •  
7.
  • Hjort, Line, et al. (författare)
  • 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner
  • 2017
  • Ingår i: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Subjects born with low birth weight (LBW) display a more energy-conserving response to fasting compared with normal birth weight (NBW) subjects. However, the molecular mechanisms explaining these metabolic differences remain unknown. Environmental influences may dynamically affect epigenetic marks, also in postnatal life. Here, we aimed to study the effects of short-term fasting on leptin (LEP) and adiponectin (ADIPOQ) DNA methylation and gene expression in subcutaneous adipose tissue (SAT) from subjects with LBW and NBW. Methods: Twenty-one young LBW men and 18 matched NBW controls were studied during 36 h fasting. Eight subjects from each group completed a control study (overnight fast). We analyzed SAT LEP and ADIPOQ methylation (Epityper MassARRAY), gene expression (q-PCR), and adipokine plasma levels. Results: After overnight fast (control study), LEP and ADIPOQ DNA methylation levels were higher in LBW compared to those in NBW subjects (p ≤ 0.03) and increased with 36 h fasting in NBW subjects only (p ≤ 0.06). Both LEP and ADIPOQ methylation levels were positively associated with total body fat percentage (p ≤ 0.05). Plasma leptin levels were higher in LBW versus NBW subjects after overnight fasting (p = 0.04) and decreased more than threefold in both groups after 36 h fasting (p ≤ 0.0001). Conclusions: This is the first study to demonstrate that fasting induces changes in DNA methylation. This was shown in LEP and ADIPOQ promoters in SAT among NBW but not LBW subjects. The altered epigenetic flexibility in LBW subjects might contribute to their differential response to fasting, adipokine levels, and increased risk of metabolic disease.
  •  
8.
  • Ling, Charlotte, et al. (författare)
  • Impact of the peroxisome proliferator activated receptor-gamma coactivator-1 beta (PGC-1 beta) Ala203Pro polymorphism on in vivo metabolism, PGC-1 beta expression and fibre type composition in human skeletal muscle
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:8, s. 1615-1620
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Peroxisome proliferator activated receptor-gamma coactivator-lp (PGC-1 beta, also known as PPARGCIB) expression is reduced in skeletal muscle from patients with type 2 diabetes mellitus and in elderly subjects. Ala203Pro, a common variant in the PGC-1 beta gene is associated with obesity. The aim of this study was to investigate whether the PGC-1 beta Ala203Pro polymorphism influences the age-related decline in skeletal muscle PGC-1 beta expression, in vivo metabolism and markers for muscle fibre type composition. Materials and methods The PGC-1 beta Ala203Pro polymerphism was genotyped in 110 young (age 28.0 +/- 1.9 years) and 86 elderly (age 62.4 +/- 2.0 years) twins and related to muscle PGC-1 beta expression, in vivo metabolism and markers for fibre type composition. Results Insulin-stimulated non-oxidative glucose metabolism (NOGM; p=0.025) and glycolytic flux rate (GF; p=0.026) were reduced in young Ala/Ala carriers compared with carriers of a 203Pro allele. In addition, a regression analysis, correcting for covariates, showed that the PGC-1 beta 203Pro allele was positively related to insulin-stimulated NOGM and GF in the young twins. While muscle expression of PGC-1 beta was reduced in elderly compared with young carriers of the Ala/Ala genotype (p <= 0.001), there was no significant age-related decline in PGC-1 beta expression in carriers of the 203Pro allele (p >= 0.4). However, a regression analysis, correcting for covariates, showed that only age was significantly related to muscle PGC-1 beta expression. Finally, PGC-1 beta expression correlated positively with markers for oxidative fibres in human muscle. Conclusions/interpretation This study suggests that young carriers of a PGC-1 beta 203Pro allele have enhanced insulin-stimulated glucose metabolism and may be protected against an age-related decline in PGC-1 beta expression in muscle.
  •  
9.
  • Ling, Charlotte, et al. (författare)
  • Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins.
  • 2004
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 114:10, s. 1518-1526
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic and environmental factors contribute to age-dependent susceptibility to type 2 diabetes. Recent studies have reported reduced expression of PPAR{gamma} coactivator 1{alpha} (PGC-1{alpha}) and PGC-1ß genes in skeletal muscle from type 2 diabetic patients, but it is not known whether this is an inherited or acquired defect. To address this question we studied expression of these genes in muscle biopsies obtained from young and elderly dizygotic and monozygotic twins without known diabetes before and after insulin stimulation and related the expression to a Gly482Ser variant in the PGC-1{alpha} gene. Insulin increased and aging reduced skeletal muscle PGC-1{alpha} and PGC-1ß mRNA levels. This age-dependent decrease in muscle gene expression was partially heritable and influenced by the PGC-1{alpha} Gly482Ser polymorphism. In addition, sex, birth weight, and aerobic capacity influenced expression of PGC-1{alpha} in a complex fashion. Whereas expression of PGC-1{alpha} in muscle was positively related to insulin-stimulated glucose uptake and oxidation, PGC-1ß expression was positively related to fat oxidation and nonoxidative glucose metabolism. We conclude that skeletal muscle PGC-1{alpha} and PGC-1ß expression are stimulated by insulin and reduced by aging. The data also suggest different regulatory functions for PGC-1{alpha} and PGC-1ß on glucose and fat oxidation in muscle cells. The finding that the age-dependent decrease in the expression of these key genes regulating oxidative phosphorylation is under genetic control could provide an explanation by which an environmental trigger (age) modifies genetic susceptibility to type 2 diabetes.
  •  
10.
  • Nilsson, Emma A, et al. (författare)
  • Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:9, s. 2962-2976
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose tissue from unrelated subjects with T2D compared with control subjects. A total of 1,410 of these sites also showed differential DNA methylation in the twins discordant for T2D. For the differentially methylated sites, the heritability estimate was 0.28. We also identified copy number variants (CNVs) in monozygotic twin pairs discordant for T2D. Taken together, subjects with T2D exhibit multiple transcriptional and epigenetic changes in adipose tissue relevant to the development of the disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy