SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vallianatou Theodosia) "

Sökning: WFRF:(Vallianatou Theodosia)

  • Resultat 1-10 av 29
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Fridjonsdottir, Elva, et al. (författare)
  • Mass spectrometry imaging identifies abnormally elevated brain L-DOPA levels and extrastriatal monoaminergic dysregulation in L-DOPA-induced dyskinesia
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • L-DOPA treatment for Parkinson's disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of L-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of L-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with L-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that L-DOPA-induced dyskinesia is linked to a dysregulation of L-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during L-DOPA treatment introduces the potential of dopamine or even L-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.
  •  
4.
  • Fridjonsdottir, Elva, et al. (författare)
  • Mass spectrometry imaging reveals brain-region specific changes in metabolism and acetylcholine levels in experimental Parkinson’s disease and L-DOPA-induced dyskinesia
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • There is evidence that cholinergic alterations are linked to various motor and non-motor symptoms of Parkinson’s disease. We therefore used mass spectrometry imaging to investigate regional changes in acetylcholine abundance in the brain of a non-human primate model of Parkinson’s disease (PD) and L-DOPA-induced dyskinesia (LID). We also present an experimental design for performing untargeted analysis using MALDI-MSI with multiple experiments incorporating quality control samples to monitor experimental variability. We observed that MPTP treatment (i) led to reductions in putaminal acetylcholine levels that persisted after L-DOPA treatment and (ii) appeared to induce a shift of choline metabolism from α-glycerophosphocholine towards betaine. LID animals exhibited reduced levels of various metabolites important for brain homeostasis including S-adenosylmethionine, glutathione, adenosine monophosphate, and acylcarnitines. The vasculature marker heme B was upregulated in the putamen of LID animals, suggesting increased blood-flow in the dyskinetic putamen. These results provide new insights into pathological choline-related metabolic changes in PD and LID.  
  •  
5.
  • Fridjonsdottir, Elva, et al. (författare)
  • Region-Specific and Age-Dependent Multitarget Effects of Acetylcholinesterase Inhibitor Tacrine on Comprehensive Neurotransmitter Systems
  • 2022
  • Ingår i: ACS Chemical Biology. - : American Chemical Society (ACS). - 1554-8929 .- 1554-8937. ; 17:1, s. 147-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Regional brain distribution and metabolism of neurotransmitters and their response to drug treatment are fundamentally important for understanding the central effects of neuroactive substances. We used matrix-assisted laser desorption/ionization mass spectrometry imaging in combination with multivariate analysis to visualize in anatomical detail metabolic effects of aging and tacrine-mediated acetylcholinesterase inhibition on comprehensive neurotransmitter systems in multiple mouse brain regions of 12-week-old and 14-month-old mice. We detected age-related increases in 3,4-dihydroxyphenylacetaldehyde and histamine, indicating oxidative stress and aging deficits in astrocytes. Tacrine had a significant impact on the metabolism of neurotransmitters in both age groups; predominantly, there was an increased norepinephrine turnover throughout the brain and decreased 3-methoxy tyramine, a marker for dopamine release, in the striatum. The striatal levels of histamine were only elevated after tacrine administration in the older animals. Our results demonstrated that tacrine is a multitarget and region-specific neuroactive agent, inducing age-specific responses. Although well-studied, the complete mechanisms of the action of tacrine are not fully understood, and the current findings reveal features that may help explain its treatment-related effectiveness and central side effects.
  •  
6.
  • Hulme, Heather, et al. (författare)
  • Basal ganglia neuropeptides show abnormal processing associated with L-DOPA-induced dyskinesia
  • 2022
  • Ingår i: npj Parkinson's Disease. - : Springer Nature. - 2373-8057. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • L-DOPA administration is the primary treatment for Parkinson's disease (PD) but long-term administration is usually accompanied by hyperkinetic side-effects called L-DOPA-induced dyskinesia (LID). Signaling neuropeptides of the basal ganglia are affected in LID and changes in the expression of neuropeptide precursors have been described, but the final products formed from these precursors have not been well defined and regionally mapped. We therefore used mass spectrometry imaging to visualize and quantify neuropeptides in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposed parkinsonian and LID Macaca mulatta brain samples. We found that dyskinesia severity correlated with the levels of some abnormally processed peptides - notably, des-tyrosine dynorphins, substance P (1-7), and substance P (1-9) - in multiple brain regions. Levels of the active neuropeptides; dynorphin B, dynorphin A (1-8), alpha-neoendorphin, substance P (1-11), and neurokinin A, in the globus pallidus and substantia nigra correlated with putaminal levels of L-DOPA. Our results demonstrate that the abundance of selected active neuropeptides is associated with L-DOPA concentrations in the putamen, emphasizing their sensitivity to L-DOPA. Additionally, levels of truncated neuropeptides (which generally exhibit reduced or altered receptor affinity) correlate with dyskinesia severity, particularly for peptides associated with the direct pathway (i.e., dynorphins and tachykinins). The increases in tone of the tachykinin, enkephalin, and dynorphin neuropeptides in LID result in abnormal processing of neuropeptides with different biological activity and may constitute a functional compensatory mechanism for balancing the increased L-DOPA levels across the whole basal ganglia.
  •  
7.
  • Hulme, Heather, et al. (författare)
  • Mass spectrometry imaging of multiple basal ganglia neuropeptides shows abnormal neuropeptide processing associated with L-DOPA-induced dyskinesia in a primate model of Parkinson’s disease
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • L-DOPA administration is the primary treatment for Parkinson’s disease (PD) but long-term administration is usually accompanied by hyperkinetic side-effects called L-DOPA-induced dyskinesia (LID). Signalling neuropeptides of the basal ganglia are affected in LID and alterations in the expression of neuropeptide precursors have been described, but the final products of the precursors are not well defined and regionally mapped. Thus, we used matrix-assisted laser desorption/ionization mass spectrometry imaging to visualize and quantify neuropeptides in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposed parkinsonian and LID Macaca mulatta brain samples. We found that the abundance of some abnormally processed peptides—des-tyrosine dynorphins, substance P (1-7) and substance P (1-9)—correlated with dyskinesia severity in multiple brain regions. Other dynorphins, α-neoendorphin and neurokinin A correlated with regional L-DOPA or dopamine levels in the internal and external globus pallidus. Our results demonstrate that the abundance of selected active neuropeptides is associated with local L-DOPA and dopamine concentrations, but the severity of LID is associated with loss of N-terminal tyrosine from dynorphin peptides and C-terminal truncation of substance P peptides, modifications that generally reduce the neuropeptides’ activity. 
  •  
8.
  • Hulme, Heather, et al. (författare)
  • Simultaneous mass spectrometry imaging of multiple neuropeptides in the brain and alterations induced by experimental parkinsonism and L-DOPA therapy
  • 2020
  • Ingår i: Neurobiology of Disease. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0969-9961 .- 1095-953X. ; 137
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropeptides are important signalling molecules in the brain and alterations in their expression levels have been linked to neurological disorders such as Parkinson's disease. It is challenging to map neuropeptide changes across and within brain regions because of their low in vivo concentrations and complex post-translational processing. Consequently, the role of neuropeptides in Parkinson's disease is not well understood. Thus, we have developed and evaluated a method to image multiple neuropeptides simultaneously in both rat and primate brain tissue sections by matrix-assisted laser desorption/ionisation mass spectrometry imaging at high lateral resolution. Using a unilateral 6-hydroxydopamine rat model of Parkinson's disease, we imaged changes in enkephalins, dynorphins, tachykinins and neurotensin associated with the dopaminergic denervation and L-DOPA treatment in multiple brain regions. L-DOPA administration significantly affected neuropeptides in the globus pallidus, while neuropeptides in the caudate-putamen were mostly affected by dopamine depletion. Using high lateral resolution imaging, we observed an increase of neurotensin in the dorsal sub-region of the globus pallidus after dopamine depletion. This study highlights the capacity of mass spectrometry imaging to elucidate the dynamics of neuropeptide signalling during Parkinson's disease and its treatment.
  •  
9.
  • Kaya, Ibrahim, et al. (författare)
  • Spatial lipidomics reveals brain region-specific changes of sulfatides in an experimental MPTP Parkinson's disease primate model
  • 2023
  • Ingår i: npj Parkinson's Disease. - : Springer Nature. - 2373-8057. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolism of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to the neurotoxin MPP+ in the brain causes permanent Parkinson's disease-like symptoms by destroying dopaminergic neurons in the pars compacta of the substantia nigra in humans and non-human primates. However, the complete molecular pathology underlying MPTP-induced parkinsonism remains poorly understood. We used dual polarity matrix-assisted laser desorption/ionization mass spectrometry imaging to thoroughly image numerous glycerophospholipids and sphingolipids in coronal brain tissue sections of MPTP-lesioned and control non-human primate brains (Macaca mulatta). The results revealed specific distributions of several sulfatide lipid molecules based on chain-length, number of double bonds, and importantly, hydroxylation stage. More specifically, certain long-chain hydroxylated sulfatides with polyunsaturated chains in the molecular structure were depleted within motor-related brain regions in the MPTP-lesioned animals, e.g., external and internal segments of globus pallidus and substantia nigra pars reticulata. In contrast, certain long-chain non-hydroxylated sulfatides were found to be elevated within the same brain regions. These findings demonstrate region-specific dysregulation of sulfatide metabolism within the MPTP-lesioned macaque brain. The depletion of long-chain hydroxylated sulfatides in the MPTP-induced pathology indicates oxidative stress and oligodendrocyte/myelin damage within the pathologically relevant brain regions. Hence, the presented findings improve our current understanding of the molecular pathology of MPTP-induced parkinsonism within primate brains, and provide a basis for further research regarding the role of dysregulated sulfatide metabolism in PD.
  •  
10.
  • Källback, Patrik, et al. (författare)
  • Cross-validated Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Quantitation Protocol for a Pharmaceutical Drug and Its Drug-Target Effects in the Brain Using Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Analyzers
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:21, s. 14676-14684
  • Tidskriftsartikel (refereegranskat)abstract
    • Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is an established tool in drug development, which enables visualization of drugs and drug metabolites at spatial localizations in tissue sections from different organs. However, robust and accurate quantitation by MALDI-MSI still remains a challenge. We present a quantitative MALDI-MSI method using two instruments with different types of mass analyzers, i.e., time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) MS, for mapping levels of the in vivo-administered drug citalopram, a selective serotonin reuptake inhibitor, in mouse brain tissue sections. Six different methods for applying calibration standards and an internal standard were evaluated. The optimized method was validated according to authorities' guidelines and requirements, including selectivity, accuracy, precision, recovery, calibration curve, sensitivity, reproducibility, and stability parameters. We showed that applying a dilution series of calibration standards followed by a homogeneously applied, stable, isotopically labeled standard for normalization and a matrix on top of the tissue section yielded similar results to those from the reference method using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The validation results were within specified limits and the brain concentrations for TOF MS (51.1 +/- 4.4 pmol/mg) and FTICR MS (56.9 +/- 6.0 pmol/mg) did not significantly differ from those of the cross-validated LC-MS/MS method (55.0 +/- 4.9 pmol/mg). The effect of in vivo citalopram administration on the serotonin neurotransmitter system was studied in the hippocampus, a brain region that is the principal target of the serotonergic afferents along with the limbic system, and it was shown that serotonin was significantly increased (2-fold), but its metabolite 5-hydroxyindoleacetic acid was not. This study makes a substantial step toward establishing MALDI-MSI as a fully quantitative validated method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
  • [1]23Nästa
Typ av publikation
tidskriftsartikel (21)
annan publikation (6)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Vallianatou, Theodos ... (29)
Nilsson, Anna (21)
Svenningsson, Per (17)
Shariatgorji, Mohamm ... (15)
Andrén, Per E., Prof ... (13)
Fridjonsdottir, Elva (12)
visa fler...
Andrén, Per E. (9)
Bézard, Erwan (7)
Shariatgorji, Reza (6)
Zhang, Xiaoqun (5)
Hulme, Heather (5)
Karlgren, Maria (4)
Goodwin, Richard J. ... (4)
Globisch, Daniel (4)
Lundgaard, Iben (4)
Shariatgorji, R (4)
Mantas, Ioannis (4)
Odell, Luke R (3)
Aerts, Jordan (3)
Jansson, Erik T., Do ... (3)
Strittmatter, Nicole (3)
Bèchet, Nicholas B. (3)
Lin, Weifeng (2)
Shanbhag, Nagesh C (2)
Li, Qin (2)
Wadensten, Henrik (2)
Schembri, Luke S (2)
Pereira, Marcela (2)
Schintu, Nicoletta (2)
Luptakova, Dominika (2)
Bergquist, Jonas (1)
Abujrais, Sandy (1)
Sävmarker, Jonas, 19 ... (1)
Aerts, Jordan T. (1)
Hammarlund-Udenaes, ... (1)
Alvarsson, Alexandra (1)
Loryan, Irena, 1977- (1)
Gunnarsdóttir, Halla (1)
Kaya, Ibrahim (1)
Loryan, Irena, Assoc ... (1)
Correia, Mario S. P. (1)
Fernagut, Pierre-Oli ... (1)
Crossman, Alan R (1)
Bechet, Nicholas (1)
Hamm, Gregory (1)
Tsiara, Ioanna (1)
Jansson, Erik T. (1)
He, Yachao (1)
Sandbaumhüter, Fried ... (1)
Yang, Yunting (1)
visa färre...
Lärosäte
Uppsala universitet (28)
Karolinska Institutet (13)
Lunds universitet (3)
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)
Naturvetenskap (11)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy